Cargando…

Hyperrésolutions cubiques et descente cohomologique

This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general...

Descripción completa

Detalles Bibliográficos
Autores principales: Guillén, F, Aznar, V Navarro, Pascual-Gainza, P, Puerta, F
Lenguaje:fre
Publicado: Springer 1988
Materias:
Acceso en línea:https://dx.doi.org/10.1007/BFb0085054
http://cds.cern.ch/record/1691688
_version_ 1780935807678283776
author Guillén, F
Aznar, V Navarro
Pascual-Gainza, P
Puerta, F
author_facet Guillén, F
Aznar, V Navarro
Pascual-Gainza, P
Puerta, F
author_sort Guillén, F
collection CERN
description This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrésolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given.
id cern-1691688
institution Organización Europea para la Investigación Nuclear
language fre
publishDate 1988
publisher Springer
record_format invenio
spelling cern-16916882021-04-21T21:07:53Zdoi:10.1007/BFb0085054http://cds.cern.ch/record/1691688freGuillén, FAznar, V NavarroPascual-Gainza, PPuerta, FHyperrésolutions cubiques et descente cohomologiqueMathematical Physics and MathematicsThis monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrésolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given.Springeroai:cds.cern.ch:16916881988
spellingShingle Mathematical Physics and Mathematics
Guillén, F
Aznar, V Navarro
Pascual-Gainza, P
Puerta, F
Hyperrésolutions cubiques et descente cohomologique
title Hyperrésolutions cubiques et descente cohomologique
title_full Hyperrésolutions cubiques et descente cohomologique
title_fullStr Hyperrésolutions cubiques et descente cohomologique
title_full_unstemmed Hyperrésolutions cubiques et descente cohomologique
title_short Hyperrésolutions cubiques et descente cohomologique
title_sort hyperrésolutions cubiques et descente cohomologique
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/BFb0085054
http://cds.cern.ch/record/1691688
work_keys_str_mv AT guillenf hyperresolutionscubiquesetdescentecohomologique
AT aznarvnavarro hyperresolutionscubiquesetdescentecohomologique
AT pascualgainzap hyperresolutionscubiquesetdescentecohomologique
AT puertaf hyperresolutionscubiquesetdescentecohomologique