Cargando…
Hyperrésolutions cubiques et descente cohomologique
This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general...
Autores principales: | , , , |
---|---|
Lenguaje: | fre |
Publicado: |
Springer
1988
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BFb0085054 http://cds.cern.ch/record/1691688 |
_version_ | 1780935807678283776 |
---|---|
author | Guillén, F Aznar, V Navarro Pascual-Gainza, P Puerta, F |
author_facet | Guillén, F Aznar, V Navarro Pascual-Gainza, P Puerta, F |
author_sort | Guillén, F |
collection | CERN |
description | This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrésolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given. |
id | cern-1691688 |
institution | Organización Europea para la Investigación Nuclear |
language | fre |
publishDate | 1988 |
publisher | Springer |
record_format | invenio |
spelling | cern-16916882021-04-21T21:07:53Zdoi:10.1007/BFb0085054http://cds.cern.ch/record/1691688freGuillén, FAznar, V NavarroPascual-Gainza, PPuerta, FHyperrésolutions cubiques et descente cohomologiqueMathematical Physics and MathematicsThis monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrésolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given.Springeroai:cds.cern.ch:16916881988 |
spellingShingle | Mathematical Physics and Mathematics Guillén, F Aznar, V Navarro Pascual-Gainza, P Puerta, F Hyperrésolutions cubiques et descente cohomologique |
title | Hyperrésolutions cubiques et descente cohomologique |
title_full | Hyperrésolutions cubiques et descente cohomologique |
title_fullStr | Hyperrésolutions cubiques et descente cohomologique |
title_full_unstemmed | Hyperrésolutions cubiques et descente cohomologique |
title_short | Hyperrésolutions cubiques et descente cohomologique |
title_sort | hyperrésolutions cubiques et descente cohomologique |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/BFb0085054 http://cds.cern.ch/record/1691688 |
work_keys_str_mv | AT guillenf hyperresolutionscubiquesetdescentecohomologique AT aznarvnavarro hyperresolutionscubiquesetdescentecohomologique AT pascualgainzap hyperresolutionscubiquesetdescentecohomologique AT puertaf hyperresolutionscubiquesetdescentecohomologique |