Cargando…
Compactifying moduli spaces for Abelian varieties
This volume presents the construction of canonical modular compactifications of moduli spaces for polarized Abelian varieties (possibly with level structure), building on the earlier work of Alexeev, Nakamura, and Namikawa. This provides a different approach to compactifying these spaces than the mo...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-540-70519-2 http://cds.cern.ch/record/1691695 |
_version_ | 1780935809173553152 |
---|---|
author | Olsson, Martin C |
author_facet | Olsson, Martin C |
author_sort | Olsson, Martin C |
collection | CERN |
description | This volume presents the construction of canonical modular compactifications of moduli spaces for polarized Abelian varieties (possibly with level structure), building on the earlier work of Alexeev, Nakamura, and Namikawa. This provides a different approach to compactifying these spaces than the more classical approach using toroical embeddings, which are not canonical. There are two main new contributions in this monograph: (1) The introduction of logarithmic geometry as understood by Fontaine, Illusie, and Kato to the study of degenerating Abelian varieties; and (2) the construction of canonical compactifications for moduli spaces with higher degree polarizations based on stack-theoretic techniques and a study of the theta group. |
id | cern-1691695 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2008 |
publisher | Springer |
record_format | invenio |
spelling | cern-16916952021-04-21T21:07:50Zdoi:10.1007/978-3-540-70519-2http://cds.cern.ch/record/1691695engOlsson, Martin CCompactifying moduli spaces for Abelian varietiesMathematical Physics and MathematicsThis volume presents the construction of canonical modular compactifications of moduli spaces for polarized Abelian varieties (possibly with level structure), building on the earlier work of Alexeev, Nakamura, and Namikawa. This provides a different approach to compactifying these spaces than the more classical approach using toroical embeddings, which are not canonical. There are two main new contributions in this monograph: (1) The introduction of logarithmic geometry as understood by Fontaine, Illusie, and Kato to the study of degenerating Abelian varieties; and (2) the construction of canonical compactifications for moduli spaces with higher degree polarizations based on stack-theoretic techniques and a study of the theta group.Springeroai:cds.cern.ch:16916952008 |
spellingShingle | Mathematical Physics and Mathematics Olsson, Martin C Compactifying moduli spaces for Abelian varieties |
title | Compactifying moduli spaces for Abelian varieties |
title_full | Compactifying moduli spaces for Abelian varieties |
title_fullStr | Compactifying moduli spaces for Abelian varieties |
title_full_unstemmed | Compactifying moduli spaces for Abelian varieties |
title_short | Compactifying moduli spaces for Abelian varieties |
title_sort | compactifying moduli spaces for abelian varieties |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-540-70519-2 http://cds.cern.ch/record/1691695 |
work_keys_str_mv | AT olssonmartinc compactifyingmodulispacesforabelianvarieties |