Cargando…
Weighted Littlewood-Paley theory and exponential-square integrability
Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain osci...
Autor principal: | Wilson, Michael |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-540-74587-7 http://cds.cern.ch/record/1691713 |
Ejemplares similares
-
Littlewood-paley and multiplier theory
por: Edwards, R E, et al.
Publicado: (1977) -
Topics in harmonic analysis related to the littlewood-paley theory (AM-63)
por: Stein, Elias M
Publicado: (1970) -
Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
por: Han, YS, et al.
Publicado: (1994) -
Littlewood–Paley Theory for Triangle Buildings
por: Steger, Tim, et al.
Publicado: (2017) -
Littlewood-Paley Operators on Morrey Spaces with Variable Exponent
por: Tao, Shuangping, et al.
Publicado: (2014)