Cargando…

Optimal urban networks via mass transportation

Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network,...

Descripción completa

Detalles Bibliográficos
Autores principales: Buttazzo, Giuseppe, Pratelli, Aldo, Stepanov, Eugene, Solimini, Sergio
Lenguaje:eng
Publicado: Springer 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-540-85799-0
http://cds.cern.ch/record/1691729
_version_ 1780935816537702400
author Buttazzo, Giuseppe
Pratelli, Aldo
Stepanov, Eugene
Solimini, Sergio
author_facet Buttazzo, Giuseppe
Pratelli, Aldo
Stepanov, Eugene
Solimini, Sergio
author_sort Buttazzo, Giuseppe
collection CERN
description Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.
id cern-1691729
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
publisher Springer
record_format invenio
spelling cern-16917292021-04-21T21:07:33Zdoi:10.1007/978-3-540-85799-0http://cds.cern.ch/record/1691729engButtazzo, GiuseppePratelli, AldoStepanov, EugeneSolimini, SergioOptimal urban networks via mass transportationMathematical Physics and MathematicsRecently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.Springeroai:cds.cern.ch:16917292009
spellingShingle Mathematical Physics and Mathematics
Buttazzo, Giuseppe
Pratelli, Aldo
Stepanov, Eugene
Solimini, Sergio
Optimal urban networks via mass transportation
title Optimal urban networks via mass transportation
title_full Optimal urban networks via mass transportation
title_fullStr Optimal urban networks via mass transportation
title_full_unstemmed Optimal urban networks via mass transportation
title_short Optimal urban networks via mass transportation
title_sort optimal urban networks via mass transportation
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-540-85799-0
http://cds.cern.ch/record/1691729
work_keys_str_mv AT buttazzogiuseppe optimalurbannetworksviamasstransportation
AT pratellialdo optimalurbannetworksviamasstransportation
AT stepanoveugene optimalurbannetworksviamasstransportation
AT soliminisergio optimalurbannetworksviamasstransportation