Cargando…
Local Lyapunov exponents: sublimiting growth rates of linear random differential equations
Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-int...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2009
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-540-85964-2 http://cds.cern.ch/record/1691731 |
Sumario: | Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too. |
---|