Cargando…

Stochastic analysis in discrete and continuous settings: with normal martingales

This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The si...

Descripción completa

Detalles Bibliográficos
Autor principal: Privault, Nicolas
Lenguaje:eng
Publicado: Springer 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-02380-4
http://cds.cern.ch/record/1691747
_version_ 1780935820400656384
author Privault, Nicolas
author_facet Privault, Nicolas
author_sort Privault, Nicolas
collection CERN
description This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The simultaneous treatment of continuous and jump processes is done in the framework of normal martingales; that includes the Brownian motion and compensated Poisson processes as specific cases. In particular, the basic tools of stochastic analysis (chaos representation, gradient, divergence, integration by parts) are presented in this general setting. Applications are given to functional and deviation inequalities and mathematical finance.
id cern-1691747
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
publisher Springer
record_format invenio
spelling cern-16917472021-04-21T21:07:24Zdoi:10.1007/978-3-642-02380-4http://cds.cern.ch/record/1691747engPrivault, NicolasStochastic analysis in discrete and continuous settings: with normal martingalesMathematical Physics and MathematicsThis volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The simultaneous treatment of continuous and jump processes is done in the framework of normal martingales; that includes the Brownian motion and compensated Poisson processes as specific cases. In particular, the basic tools of stochastic analysis (chaos representation, gradient, divergence, integration by parts) are presented in this general setting. Applications are given to functional and deviation inequalities and mathematical finance.Springeroai:cds.cern.ch:16917472009
spellingShingle Mathematical Physics and Mathematics
Privault, Nicolas
Stochastic analysis in discrete and continuous settings: with normal martingales
title Stochastic analysis in discrete and continuous settings: with normal martingales
title_full Stochastic analysis in discrete and continuous settings: with normal martingales
title_fullStr Stochastic analysis in discrete and continuous settings: with normal martingales
title_full_unstemmed Stochastic analysis in discrete and continuous settings: with normal martingales
title_short Stochastic analysis in discrete and continuous settings: with normal martingales
title_sort stochastic analysis in discrete and continuous settings: with normal martingales
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-02380-4
http://cds.cern.ch/record/1691747
work_keys_str_mv AT privaultnicolas stochasticanalysisindiscreteandcontinuoussettingswithnormalmartingales