Cargando…
Partial inner product spaces: theory and applications
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systema...
Autores principales: | Antoine, Jean-Pierre, Trapani, Camillo |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2009
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-05136-4 http://cds.cern.ch/record/1691753 |
Ejemplares similares
-
Partial *-algebras and their operator realizations
por: Antoine, Jean-Pierre, et al.
Publicado: (2002) -
Operator theory in inner product spaces
por: Forster, Karl-Heinz, et al.
Publicado: (2007) -
Inner product structures: theory and applications
por: Istrăţescu, Vasile Ion
Publicado: (1987) -
Indefinite inner product spaces
por: Bognár, Janós
Publicado: (1974) -
Characterizations of inner product spaces
por: Amir, Dan
Publicado: (1986)