Cargando…
Intersection spaces, spatial homology truncation, and string theory
Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rat...
Autor principal: | Banagl, Markus |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-12589-8 http://cds.cern.ch/record/1691765 |
Ejemplares similares
-
Extending intersection homology type invariants to non-Witt spaces
por: Banagl, Markus
Publicado: (2002) -
Topological Invariants of Stratified Spaces
por: Banagl, M
Publicado: (2007) -
Naturality of Floer homology of open subsets in lagrangian intersection theory
por: Oh, Yu G
Publicado: (1997) -
A homology theory for smale spaces
por: Putnam, Ian F
Publicado: (2014) -
String topology and cyclic homology
por: Cohen, Ralph L, et al.
Publicado: (2006)