Cargando…
Symmetries of compact Riemann surfaces
This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monog...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2010
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-14828-6 http://cds.cern.ch/record/1691771 |
_version_ | 1780935825667653632 |
---|---|
author | Bujalance, Emilio Cirre, Francisco Javier Gamboa, José Manuel Gromadzki, Grzegorz |
author_facet | Bujalance, Emilio Cirre, Francisco Javier Gamboa, José Manuel Gromadzki, Grzegorz |
author_sort | Bujalance, Emilio |
collection | CERN |
description | This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces. |
id | cern-1691771 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2010 |
publisher | Springer |
record_format | invenio |
spelling | cern-16917712021-04-21T21:07:12Zdoi:10.1007/978-3-642-14828-6http://cds.cern.ch/record/1691771engBujalance, EmilioCirre, Francisco JavierGamboa, José ManuelGromadzki, GrzegorzSymmetries of compact Riemann surfacesMathematical Physics and MathematicsThis monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.Springeroai:cds.cern.ch:16917712010 |
spellingShingle | Mathematical Physics and Mathematics Bujalance, Emilio Cirre, Francisco Javier Gamboa, José Manuel Gromadzki, Grzegorz Symmetries of compact Riemann surfaces |
title | Symmetries of compact Riemann surfaces |
title_full | Symmetries of compact Riemann surfaces |
title_fullStr | Symmetries of compact Riemann surfaces |
title_full_unstemmed | Symmetries of compact Riemann surfaces |
title_short | Symmetries of compact Riemann surfaces |
title_sort | symmetries of compact riemann surfaces |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-642-14828-6 http://cds.cern.ch/record/1691771 |
work_keys_str_mv | AT bujalanceemilio symmetriesofcompactriemannsurfaces AT cirrefranciscojavier symmetriesofcompactriemannsurfaces AT gamboajosemanuel symmetriesofcompactriemannsurfaces AT gromadzkigrzegorz symmetriesofcompactriemannsurfaces |