Cargando…

Symmetries of compact Riemann surfaces

This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monog...

Descripción completa

Detalles Bibliográficos
Autores principales: Bujalance, Emilio, Cirre, Francisco Javier, Gamboa, José Manuel, Gromadzki, Grzegorz
Lenguaje:eng
Publicado: Springer 2010
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-14828-6
http://cds.cern.ch/record/1691771
_version_ 1780935825667653632
author Bujalance, Emilio
Cirre, Francisco Javier
Gamboa, José Manuel
Gromadzki, Grzegorz
author_facet Bujalance, Emilio
Cirre, Francisco Javier
Gamboa, José Manuel
Gromadzki, Grzegorz
author_sort Bujalance, Emilio
collection CERN
description This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
id cern-1691771
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
publisher Springer
record_format invenio
spelling cern-16917712021-04-21T21:07:12Zdoi:10.1007/978-3-642-14828-6http://cds.cern.ch/record/1691771engBujalance, EmilioCirre, Francisco JavierGamboa, José ManuelGromadzki, GrzegorzSymmetries of compact Riemann surfacesMathematical Physics and MathematicsThis monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.Springeroai:cds.cern.ch:16917712010
spellingShingle Mathematical Physics and Mathematics
Bujalance, Emilio
Cirre, Francisco Javier
Gamboa, José Manuel
Gromadzki, Grzegorz
Symmetries of compact Riemann surfaces
title Symmetries of compact Riemann surfaces
title_full Symmetries of compact Riemann surfaces
title_fullStr Symmetries of compact Riemann surfaces
title_full_unstemmed Symmetries of compact Riemann surfaces
title_short Symmetries of compact Riemann surfaces
title_sort symmetries of compact riemann surfaces
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-14828-6
http://cds.cern.ch/record/1691771
work_keys_str_mv AT bujalanceemilio symmetriesofcompactriemannsurfaces
AT cirrefranciscojavier symmetriesofcompactriemannsurfaces
AT gamboajosemanuel symmetriesofcompactriemannsurfaces
AT gromadzkigrzegorz symmetriesofcompactriemannsurfaces