Cargando…
Can we push the fundamental Planck scale above $10^{19}$ GeV?
The value of the quantum gravity scale is MPl = $10^{19}$ GeV. However, this is inherently a three-dimensional quantity. We know that we can bring this scale all the way down to TeV if we introduce extra dimensions with large volume. This will solve the hierarchy problem by destroying the desert bet...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1692600 |
Sumario: | The value of the quantum gravity scale is MPl = $10^{19}$ GeV. However, this is inherently a three-dimensional quantity. We know that we can bring this scale all the way down to TeV if we introduce extra dimensions with large volume. This will solve the hierarchy problem by destroying the desert between the electroweak and gravity scales, but will also introduce a host of new problems since some things (e.g. proton stability, neutrino masses etc) have their natural habitat in this desert. In contrast, we can also solve the hierarchy problem by reducing the number of dimensions at high energies. If the fundamental theory (which does not have to be gravity as we understand it today) is lower dimensional, then the fundamental energy scale might be much greater than 1019GeV. Then, some experimental and observational limits (e.g. on Lorentz invariance violation) which are coming close to or even exceeding the scale of 1019GeV can be evaded. In addition, scattering of particles at transplanckian energies will not produce mini-black holes which could prevent us from probing arbitrarily short distances, and thus avoid "the end of short distance physics". |
---|