Cargando…
$ \mathcal{W} $ symmetry in six dimensions
Six-dimensional conformal field theories with $(2,0)$ supersymmetry are shown to possess a protected sector of operators and observables that are isomorphic to a two-dimensional chiral algebra. We argue that the chiral algebra associated to a $(2,0)$ theory labelled by the simply-laced Lie algebra $...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2015)017 http://cds.cern.ch/record/1693594 |
Sumario: | Six-dimensional conformal field theories with $(2,0)$ supersymmetry are shown to possess a protected sector of operators and observables that are isomorphic to a two-dimensional chiral algebra. We argue that the chiral algebra associated to a $(2,0)$ theory labelled by the simply-laced Lie algebra $\mathfrak{g}$ is precisely the W algebra of type $\mathfrak{g}$, for a specific value of the central charge. Simple examples of observables that are made accessible by this correspondence are the three-point functions of half-BPS operators. For the $A_n$ series, we compare our results at large $n$ to those obtained using the holographic dual description and find perfect agreement. We further find protected chiral algebras that appear on the worldvolumes of codimension two defects in $(2,0)$ SCFTs. This construction has likely implications for understanding the microscopic origin of the AGT correspondence. |
---|