Cargando…

Ecole d'été de probabilités de Saint-Flour XLIII

These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, su...

Descripción completa

Detalles Bibliográficos
Autor principal: Burdzy, Krzysztof
Lenguaje:eng
Publicado: Springer 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-04394-4
http://cds.cern.ch/record/1695837
_version_ 1780935995316764672
author Burdzy, Krzysztof
author_facet Burdzy, Krzysztof
author_sort Burdzy, Krzysztof
collection CERN
description These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.
id cern-1695837
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher Springer
record_format invenio
spelling cern-16958372021-04-25T16:40:20Zdoi:10.1007/978-3-319-04394-4http://cds.cern.ch/record/1695837engBurdzy, KrzysztofEcole d'été de probabilités de Saint-Flour XLIIIMathematical Physics and MathematicsThese lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.Springeroai:cds.cern.ch:16958372014
spellingShingle Mathematical Physics and Mathematics
Burdzy, Krzysztof
Ecole d'été de probabilités de Saint-Flour XLIII
title Ecole d'été de probabilités de Saint-Flour XLIII
title_full Ecole d'été de probabilités de Saint-Flour XLIII
title_fullStr Ecole d'été de probabilités de Saint-Flour XLIII
title_full_unstemmed Ecole d'été de probabilités de Saint-Flour XLIII
title_short Ecole d'été de probabilités de Saint-Flour XLIII
title_sort ecole d'été de probabilités de saint-flour xliii
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-04394-4
http://cds.cern.ch/record/1695837
work_keys_str_mv AT burdzykrzysztof ecoledetedeprobabilitesdesaintflourxliii