Cargando…
Ecole d'été de probabilités de Saint-Flour XLIII
These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, su...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-04394-4 http://cds.cern.ch/record/1695837 |
_version_ | 1780935995316764672 |
---|---|
author | Burdzy, Krzysztof |
author_facet | Burdzy, Krzysztof |
author_sort | Burdzy, Krzysztof |
collection | CERN |
description | These lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains. |
id | cern-1695837 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
publisher | Springer |
record_format | invenio |
spelling | cern-16958372021-04-25T16:40:20Zdoi:10.1007/978-3-319-04394-4http://cds.cern.ch/record/1695837engBurdzy, KrzysztofEcole d'été de probabilités de Saint-Flour XLIIIMathematical Physics and MathematicsThese lecture notes provide an introduction to the applications of Brownian motion to analysis and, more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics. The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains.Springeroai:cds.cern.ch:16958372014 |
spellingShingle | Mathematical Physics and Mathematics Burdzy, Krzysztof Ecole d'été de probabilités de Saint-Flour XLIII |
title | Ecole d'été de probabilités de Saint-Flour XLIII |
title_full | Ecole d'été de probabilités de Saint-Flour XLIII |
title_fullStr | Ecole d'été de probabilités de Saint-Flour XLIII |
title_full_unstemmed | Ecole d'été de probabilités de Saint-Flour XLIII |
title_short | Ecole d'été de probabilités de Saint-Flour XLIII |
title_sort | ecole d'été de probabilités de saint-flour xliii |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-04394-4 http://cds.cern.ch/record/1695837 |
work_keys_str_mv | AT burdzykrzysztof ecoledetedeprobabilitesdesaintflourxliii |