Cargando…

Ecole d'été de probabilités de Saint-Flour XXXIV

The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, p...

Descripción completa

Detalles Bibliográficos
Autor principal: Picard, Jean
Lenguaje:eng
Publicado: Springer 2006
Materias:
Acceso en línea:https://dx.doi.org/10.1007/b128444
http://cds.cern.ch/record/1695849
_version_ 1780935997622583296
author Picard, Jean
author_facet Picard, Jean
author_sort Picard, Jean
collection CERN
description The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, percolation, oriented percolation, and the contact process. This volume provides a unified and extensive overview of the lace expansion and its applications to these models. Results include proofs of existence of critical exponents and construction of scaling limits. Often, the scaling limit is described in terms of super-Brownian motion.
id cern-1695849
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2006
publisher Springer
record_format invenio
spelling cern-16958492021-04-25T16:40:13Zdoi:10.1007/b128444http://cds.cern.ch/record/1695849engPicard, JeanEcole d'été de probabilités de Saint-Flour XXXIVMathematical Physics and MathematicsThe lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, percolation, oriented percolation, and the contact process. This volume provides a unified and extensive overview of the lace expansion and its applications to these models. Results include proofs of existence of critical exponents and construction of scaling limits. Often, the scaling limit is described in terms of super-Brownian motion.Springeroai:cds.cern.ch:16958492006
spellingShingle Mathematical Physics and Mathematics
Picard, Jean
Ecole d'été de probabilités de Saint-Flour XXXIV
title Ecole d'été de probabilités de Saint-Flour XXXIV
title_full Ecole d'été de probabilités de Saint-Flour XXXIV
title_fullStr Ecole d'été de probabilités de Saint-Flour XXXIV
title_full_unstemmed Ecole d'été de probabilités de Saint-Flour XXXIV
title_short Ecole d'été de probabilités de Saint-Flour XXXIV
title_sort ecole d'été de probabilités de saint-flour xxxiv
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/b128444
http://cds.cern.ch/record/1695849
work_keys_str_mv AT picardjean ecoledetedeprobabilitesdesaintflourxxxiv