Cargando…

Ecole d'été de probabilités de Saint-Flour XXXV

Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as th...

Descripción completa

Detalles Bibliográficos
Autor principal: Evans, Steven Neil
Lenguaje:eng
Publicado: Springer 2008
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-540-74798-7
http://cds.cern.ch/record/1695951
_version_ 1780936019443449856
author Evans, Steven Neil
author_facet Evans, Steven Neil
author_sort Evans, Steven Neil
collection CERN
description Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.
id cern-1695951
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2008
publisher Springer
record_format invenio
spelling cern-16959512021-04-25T16:39:17Zdoi:10.1007/978-3-540-74798-7http://cds.cern.ch/record/1695951engEvans, Steven NeilEcole d'été de probabilités de Saint-Flour XXXVMathematical Physics and MathematicsRandom trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.Springeroai:cds.cern.ch:16959512008
spellingShingle Mathematical Physics and Mathematics
Evans, Steven Neil
Ecole d'été de probabilités de Saint-Flour XXXV
title Ecole d'été de probabilités de Saint-Flour XXXV
title_full Ecole d'été de probabilités de Saint-Flour XXXV
title_fullStr Ecole d'été de probabilités de Saint-Flour XXXV
title_full_unstemmed Ecole d'été de probabilités de Saint-Flour XXXV
title_short Ecole d'été de probabilités de Saint-Flour XXXV
title_sort ecole d'été de probabilités de saint-flour xxxv
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-540-74798-7
http://cds.cern.ch/record/1695951
work_keys_str_mv AT evansstevenneil ecoledetedeprobabilitesdesaintflourxxxv