Cargando…
Ecole d'été de probabilités de Saint-Flour XXXV
Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as th...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-540-74798-7 http://cds.cern.ch/record/1695951 |
_version_ | 1780936019443449856 |
---|---|
author | Evans, Steven Neil |
author_facet | Evans, Steven Neil |
author_sort | Evans, Steven Neil |
collection | CERN |
description | Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory. |
id | cern-1695951 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2008 |
publisher | Springer |
record_format | invenio |
spelling | cern-16959512021-04-25T16:39:17Zdoi:10.1007/978-3-540-74798-7http://cds.cern.ch/record/1695951engEvans, Steven NeilEcole d'été de probabilités de Saint-Flour XXXVMathematical Physics and MathematicsRandom trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.Springeroai:cds.cern.ch:16959512008 |
spellingShingle | Mathematical Physics and Mathematics Evans, Steven Neil Ecole d'été de probabilités de Saint-Flour XXXV |
title | Ecole d'été de probabilités de Saint-Flour XXXV |
title_full | Ecole d'été de probabilités de Saint-Flour XXXV |
title_fullStr | Ecole d'été de probabilités de Saint-Flour XXXV |
title_full_unstemmed | Ecole d'été de probabilités de Saint-Flour XXXV |
title_short | Ecole d'été de probabilités de Saint-Flour XXXV |
title_sort | ecole d'été de probabilités de saint-flour xxxv |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-540-74798-7 http://cds.cern.ch/record/1695951 |
work_keys_str_mv | AT evansstevenneil ecoledetedeprobabilitesdesaintflourxxxv |