Cargando…

Ecole d'été de probabilités de Saint-Flour XL

This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented i...

Descripción completa

Detalles Bibliográficos
Autor principal: Flandoli, Franco
Lenguaje:eng
Publicado: Springer 2011
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-18231-0
http://cds.cern.ch/record/1695958
_version_ 1780936020953399296
author Flandoli, Franco
author_facet Flandoli, Franco
author_sort Flandoli, Franco
collection CERN
description This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.
id cern-1695958
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
publisher Springer
record_format invenio
spelling cern-16959582021-04-25T16:39:14Zdoi:10.1007/978-3-642-18231-0http://cds.cern.ch/record/1695958engFlandoli, FrancoEcole d'été de probabilités de Saint-Flour XLMathematical Physics and MathematicsThis volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.Springeroai:cds.cern.ch:16959582011
spellingShingle Mathematical Physics and Mathematics
Flandoli, Franco
Ecole d'été de probabilités de Saint-Flour XL
title Ecole d'été de probabilités de Saint-Flour XL
title_full Ecole d'été de probabilités de Saint-Flour XL
title_fullStr Ecole d'été de probabilités de Saint-Flour XL
title_full_unstemmed Ecole d'été de probabilités de Saint-Flour XL
title_short Ecole d'été de probabilités de Saint-Flour XL
title_sort ecole d'été de probabilités de saint-flour xl
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-18231-0
http://cds.cern.ch/record/1695958
work_keys_str_mv AT flandolifranco ecoledetedeprobabilitesdesaintflourxl