Cargando…
Learning to discover: machine learning in high-energy physics
<!--HTML-->In this talk we will survey some of the latest developments in machine learning research through the optics of potential applications in high-energy physics. We will then describe three ongoing projects in detail. The main subject of the talk is the data challenge we are organizing...
Autor principal: | Kégl, Balázs |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1702668 |
Ejemplares similares
-
A short history of neutrinos, what we have learned about them, what we have learned using them, up to neutrino oscillations.”
por: Steinberger, Jack
Publicado: (2012) -
Real-time Machine Learning in particle physics
por: Aarrestad, Thea
Publicado: (2022) -
STAR Beam Energy Scan
por: Leung, Yue-Hang
Publicado: (2023) -
Physics at CLIC
por: Linssen, Lucie
Publicado: (2017) -
Advanced Machine Learning for Classification, Regression, and Generation in Jet Physics
por: Nachman, Ben
Publicado: (2017)