Cargando…

$\mathcal N=2$ Heterotic-Type II duality and bundle moduli

Heterotic string compactifications on a $K3$ surface $\mathfrak{S}$ depend on a choice of hyperk\"ahler metric, anti-self-dual gauge connection and Kalb-Ramond flux, parametrized by hypermultiplet scalars. The metric on hypermultiplet moduli space is in principle computable within the $(0,2)$ s...

Descripción completa

Detalles Bibliográficos
Autores principales: Alexandrov, Sergei, Louis, Jan, Pioline, Boris, Valandro, Roberto
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP08(2014)092
http://cds.cern.ch/record/1702830
Descripción
Sumario:Heterotic string compactifications on a $K3$ surface $\mathfrak{S}$ depend on a choice of hyperk\"ahler metric, anti-self-dual gauge connection and Kalb-Ramond flux, parametrized by hypermultiplet scalars. The metric on hypermultiplet moduli space is in principle computable within the $(0,2)$ superconformal field theory on the heterotic string worldsheet, although little is known about it in practice. Using duality with type II strings compactified on a Calabi-Yau threefold, we predict the form of the quaternion-K\"ahler metric on hypermultiplet moduli space when $\mathfrak{S}$ is elliptically fibered, in the limit of a large fiber and even larger base. The result is in general agreement with expectations from Kaluza-Klein reduction, in particular the metric has a two-stage fibration structure, where the $B$-field moduli are fibered over bundle and metric moduli, while bundle moduli are themselves fibered over metric moduli. A more precise match must await a detailed analysis of $R^2$-corrected ten-dimensional supergravity.