Cargando…
3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production
3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2012.05.070 http://cds.cern.ch/record/1709857 |
_version_ | 1780936667498020864 |
---|---|
author | Da Via, Cinzia Boscardil, Maurizio Dalla Betta, GianFranco Fleta, Celeste Giacomini, Gabriele Hansen, Thor-Erik Hasi, Jasmine Kok, Angela Micelli, Andrea Povoli, Marco Vianello, Elisa Zorzi, Nicola Watts, S.J Grenier, Philippe Grinstein, Sebastian Darbo, Giovanni Gemme, Claudia Kenney, Christopher La Rosa, Alessandro Parker, Sherwood Pohl, David-Leon Pellegrini, Giulio |
author_facet | Da Via, Cinzia Boscardil, Maurizio Dalla Betta, GianFranco Fleta, Celeste Giacomini, Gabriele Hansen, Thor-Erik Hasi, Jasmine Kok, Angela Micelli, Andrea Povoli, Marco Vianello, Elisa Zorzi, Nicola Watts, S.J Grenier, Philippe Grinstein, Sebastian Darbo, Giovanni Gemme, Claudia Kenney, Christopher La Rosa, Alessandro Parker, Sherwood Pohl, David-Leon Pellegrini, Giulio |
author_sort | Da Via, Cinzia |
collection | CERN |
description | 3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBL sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date. |
id | cern-1709857 |
institution | Organización Europea para la Investigación Nuclear |
publishDate | 2013 |
record_format | invenio |
spelling | cern-17098572019-09-30T06:29:59Zdoi:10.1016/j.nima.2012.05.070http://cds.cern.ch/record/1709857Da Via, CinziaBoscardil, MaurizioDalla Betta, GianFrancoFleta, CelesteGiacomini, GabrieleHansen, Thor-ErikHasi, JasmineKok, AngelaMicelli, AndreaPovoli, MarcoVianello, ElisaZorzi, NicolaWatts, S.JGrenier, PhilippeGrinstein, SebastianDarbo, GiovanniGemme, ClaudiaKenney, ChristopherLa Rosa, AlessandroParker, SherwoodPohl, David-LeonPellegrini, Giulio3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL productionDetectors and Experimental Techniques3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBL sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.SLAC-REPRINT-2013-039oai:cds.cern.ch:17098572013 |
spellingShingle | Detectors and Experimental Techniques Da Via, Cinzia Boscardil, Maurizio Dalla Betta, GianFranco Fleta, Celeste Giacomini, Gabriele Hansen, Thor-Erik Hasi, Jasmine Kok, Angela Micelli, Andrea Povoli, Marco Vianello, Elisa Zorzi, Nicola Watts, S.J Grenier, Philippe Grinstein, Sebastian Darbo, Giovanni Gemme, Claudia Kenney, Christopher La Rosa, Alessandro Parker, Sherwood Pohl, David-Leon Pellegrini, Giulio 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production |
title | 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production |
title_full | 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production |
title_fullStr | 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production |
title_full_unstemmed | 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production |
title_short | 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production |
title_sort | 3d active edge silicon sensors: device processing, yield and qa for the atlas-ibl production |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1016/j.nima.2012.05.070 http://cds.cern.ch/record/1709857 |
work_keys_str_mv | AT daviacinzia 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT boscardilmaurizio 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT dallabettagianfranco 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT fletaceleste 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT giacominigabriele 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT hansenthorerik 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT hasijasmine 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT kokangela 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT micelliandrea 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT povolimarco 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT vianelloelisa 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT zorzinicola 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT wattssj 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT grenierphilippe 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT grinsteinsebastian 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT darbogiovanni 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT gemmeclaudia 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT kenneychristopher 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT larosaalessandro 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT parkersherwood 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT pohldavidleon 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction AT pellegrinigiulio 3dactiveedgesiliconsensorsdeviceprocessingyieldandqafortheatlasiblproduction |