Cargando…
Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
Configuration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically r...
Autores principales: | , , |
---|---|
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-4-431-54270-4_9 http://cds.cern.ch/record/1709958 |
_version_ | 1780936688094150656 |
---|---|
author | Nikolov, Nikolay M Stora, Raymond Todorov, Ivan |
author_facet | Nikolov, Nikolay M Stora, Raymond Todorov, Ivan |
author_sort | Nikolov, Nikolay M |
collection | CERN |
description | Configuration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group. |
id | cern-1709958 |
institution | Organización Europea para la Investigación Nuclear |
publishDate | 2013 |
record_format | invenio |
spelling | cern-17099582019-09-30T06:29:59Zdoi:10.1007/978-4-431-54270-4_9http://cds.cern.ch/record/1709958Nikolov, Nikolay MStora, RaymondTodorov, IvanEuclidean Configuration Space Renormalization, Residues and Dilation AnomalyParticle Physics - TheoryConfiguration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group.oai:cds.cern.ch:17099582013 |
spellingShingle | Particle Physics - Theory Nikolov, Nikolay M Stora, Raymond Todorov, Ivan Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly |
title | Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly |
title_full | Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly |
title_fullStr | Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly |
title_full_unstemmed | Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly |
title_short | Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly |
title_sort | euclidean configuration space renormalization, residues and dilation anomaly |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1007/978-4-431-54270-4_9 http://cds.cern.ch/record/1709958 |
work_keys_str_mv | AT nikolovnikolaym euclideanconfigurationspacerenormalizationresiduesanddilationanomaly AT storaraymond euclideanconfigurationspacerenormalizationresiduesanddilationanomaly AT todorovivan euclideanconfigurationspacerenormalizationresiduesanddilationanomaly |