Cargando…

Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly

Configuration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically r...

Descripción completa

Detalles Bibliográficos
Autores principales: Nikolov, Nikolay M, Stora, Raymond, Todorov, Ivan
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-4-431-54270-4_9
http://cds.cern.ch/record/1709958
_version_ 1780936688094150656
author Nikolov, Nikolay M
Stora, Raymond
Todorov, Ivan
author_facet Nikolov, Nikolay M
Stora, Raymond
Todorov, Ivan
author_sort Nikolov, Nikolay M
collection CERN
description Configuration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group.
id cern-1709958
institution Organización Europea para la Investigación Nuclear
publishDate 2013
record_format invenio
spelling cern-17099582019-09-30T06:29:59Zdoi:10.1007/978-4-431-54270-4_9http://cds.cern.ch/record/1709958Nikolov, Nikolay MStora, RaymondTodorov, IvanEuclidean Configuration Space Renormalization, Residues and Dilation AnomalyParticle Physics - TheoryConfiguration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group.oai:cds.cern.ch:17099582013
spellingShingle Particle Physics - Theory
Nikolov, Nikolay M
Stora, Raymond
Todorov, Ivan
Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
title Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
title_full Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
title_fullStr Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
title_full_unstemmed Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
title_short Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
title_sort euclidean configuration space renormalization, residues and dilation anomaly
topic Particle Physics - Theory
url https://dx.doi.org/10.1007/978-4-431-54270-4_9
http://cds.cern.ch/record/1709958
work_keys_str_mv AT nikolovnikolaym euclideanconfigurationspacerenormalizationresiduesanddilationanomaly
AT storaraymond euclideanconfigurationspacerenormalizationresiduesanddilationanomaly
AT todorovivan euclideanconfigurationspacerenormalizationresiduesanddilationanomaly