Cargando…
A Specialized Processor for Track Reconstruction at the LHC Crossing Rate
We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massiv...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/9/09/C09001 http://cds.cern.ch/record/1712406 |
Sumario: | We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-$\mu$s latencies when this algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout. |
---|