Cargando…
$CPT$ violation searches and prospects for LHCb
An overview of current experimental bounds on $CPT$ violation in neutral meson mixing is given. New values for the $CPT$ asymmetry in the $B^0$ and $B_s^0$ systems are deduced from BaBar, Belle and LHCb data. With dedicated analyses, LHCb will be able to further improve the bounds on $CPT$ violation...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2015.01.036 http://cds.cern.ch/record/1741323 |
Sumario: | An overview of current experimental bounds on $CPT$ violation in neutral meson mixing is given. New values for the $CPT$ asymmetry in the $B^0$ and $B_s^0$ systems are deduced from BaBar, Belle and LHCb data. With dedicated analyses, LHCb will be able to further improve the bounds on $CPT$ violation in the $D^0$, $B^0$ and $B_s^0$ systems. Since $CPT$ violation implies violation of Lorentz invariance, the observed $CPT$ asymmetry will exhibit sidereal- and boost-dependent variations. Such $CPT$-violating and Lorentz-violating effects are accommodated in the framework of the Standard-Model Extension (SME). The large boost of the neutral mesons produced at LHCb results in a high sensitivity to the corresponding SME coefficients. For the $B^0$ and $B_s^0$ systems, using existing LHCb data, we determine with high precision the SME coefficients that are not varying with sidereal time. With a full sidereal analysis, LHCb will be able to improve the existing SME bounds in the $D^0$, $B^0$ and $B_s^0$ systems by up to two orders of magnitude. |
---|