Cargando…
Electromagnetic simulations for non-ultrarelativistic beams and applications to the CERN low energy machines
In the framework of the PS-Booster upgrade project an accurate impedance model is needed in order to determine the effect on the beam stability and assess the impact of the new devices to be installed in the machine. CST 3-D EM simulations are widely used to estimate the impedance contribution of th...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1742190 |
Sumario: | In the framework of the PS-Booster upgrade project an accurate impedance model is needed in order to determine the effect on the beam stability and assess the impact of the new devices to be installed in the machine. CST 3-D EM simulations are widely used to estimate the impedance contribution of the different devices along the CERN accelerator complex. Unlike the highly relativistic case, in which the reliability of the EM solver has been proved in many specific cases by comparing simulations with analytical results, the nonrelativistic case has been so far not yet benchmarked. In order to use systematically CST 3-D EM simulations for the PS-Booster, or even lower energy machines like the antiproton decelerator ELENA, a validation campaign has been carried out. The main complication to single out the beam coupling impedance, as resulting from the interaction of the beam with the surroundings, consisted of removing reliably the strong contribution of the direct space charge of the source bunch, which is included in the EM calculation. The simulation results were then benchmarked with the analytical results for the case of a PEC cylindrical tube and of a ferrite loaded kicker. |
---|