Cargando…

Algebraic number theory

The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from...

Descripción completa

Detalles Bibliográficos
Autor principal: Jarvis, Frazer
Lenguaje:eng
Publicado: Springer 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-07545-7
http://cds.cern.ch/record/1742611
_version_ 1780942740039663616
author Jarvis, Frazer
author_facet Jarvis, Frazer
author_sort Jarvis, Frazer
collection CERN
description The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.
id cern-1742611
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher Springer
record_format invenio
spelling cern-17426112021-04-21T20:56:33Zdoi:10.1007/978-3-319-07545-7http://cds.cern.ch/record/1742611engJarvis, FrazerAlgebraic number theoryMathematical Physics and MathematicsThe technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.Springeroai:cds.cern.ch:17426112014
spellingShingle Mathematical Physics and Mathematics
Jarvis, Frazer
Algebraic number theory
title Algebraic number theory
title_full Algebraic number theory
title_fullStr Algebraic number theory
title_full_unstemmed Algebraic number theory
title_short Algebraic number theory
title_sort algebraic number theory
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-07545-7
http://cds.cern.ch/record/1742611
work_keys_str_mv AT jarvisfrazer algebraicnumbertheory