Cargando…

Infinitely many inequivalent field theories from one Lagrangian

Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\phi$. In Euclidean space the Lagrangian of such a theory, $L=\frac{1}{2}(\nabla\phi)^2-ig\phi\exp(ia\phi)$, is...

Descripción completa

Detalles Bibliográficos
Autores principales: Bender, Carl M., Hook, Daniel W., Mavromatos, Nick E., Sarkar, Sarben
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevLett.113.231605
http://cds.cern.ch/record/1748955
_version_ 1780943016834367488
author Bender, Carl M.
Hook, Daniel W.
Mavromatos, Nick E.
Sarkar, Sarben
author_facet Bender, Carl M.
Hook, Daniel W.
Mavromatos, Nick E.
Sarkar, Sarben
author_sort Bender, Carl M.
collection CERN
description Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\phi$. In Euclidean space the Lagrangian of such a theory, $L=\frac{1}{2}(\nabla\phi)^2-ig\phi\exp(ia\phi)$, is analyzed using the techniques of PT-symmetric quantum theory. It is shown that L defines an infinite number of unitarily inequivalent sectors of the theory labeled by the integer n. In one-dimensional space (quantum mechanics) the energy spectrum is calculated in the semiclassical limit and the mth energy level in the nth sector is given by $E_{m,n}\sim(m+1/2)^2a^2/(16n^2)$.
id cern-1748955
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
record_format invenio
spelling cern-17489552023-03-14T17:49:09Zdoi:10.1103/PhysRevLett.113.231605http://cds.cern.ch/record/1748955engBender, Carl M.Hook, Daniel W.Mavromatos, Nick E.Sarkar, SarbenInfinitely many inequivalent field theories from one LagrangianParticle Physics - TheoryLogarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\phi$. In Euclidean space the Lagrangian of such a theory, $L=\frac{1}{2}(\nabla\phi)^2-ig\phi\exp(ia\phi)$, is analyzed using the techniques of PT-symmetric quantum theory. It is shown that L defines an infinite number of unitarily inequivalent sectors of the theory labeled by the integer n. In one-dimensional space (quantum mechanics) the energy spectrum is calculated in the semiclassical limit and the mth energy level in the nth sector is given by $E_{m,n}\sim(m+1/2)^2a^2/(16n^2)$.<p>Logarithmic timelike Liouville quantum field theory has a generalized <inline-formula><mml:math display="inline"><mml:mi mathvariant="script">PT</mml:mi></mml:math></inline-formula> invariance, where <inline-formula><mml:math display="inline"><mml:mi mathvariant="script">T</mml:mi></mml:math></inline-formula> is the time-reversal operator and <inline-formula><mml:math display="inline"><mml:mi mathvariant="script">P</mml:mi></mml:math></inline-formula> stands for an <inline-formula><mml:math display="inline"><mml:mi>S</mml:mi></mml:math></inline-formula>-duality reflection of the Liouville field <inline-formula><mml:math display="inline"><mml:mi>ϕ</mml:mi></mml:math></inline-formula>. In Euclidean space, the Lagrangian of such a theory <inline-formula><mml:math display="inline"><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mo stretchy="false">(</mml:mo><mml:mo>∇</mml:mo><mml:mi>ϕ</mml:mi><mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mo>-</mml:mo><mml:mi>i</mml:mi><mml:mi>g</mml:mi><mml:mi>ϕ</mml:mi><mml:mi>exp</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mi>a</mml:mi><mml:mi>ϕ</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> is analyzed using the techniques of <inline-formula><mml:math display="inline"><mml:mi mathvariant="script">PT</mml:mi></mml:math></inline-formula>-symmetric quantum theory. It is shown that <inline-formula><mml:math display="inline"><mml:mi>L</mml:mi></mml:math></inline-formula> defines an infinite number of unitarily inequivalent sectors of the theory labeled by the integer <inline-formula><mml:math display="inline"><mml:mi>n</mml:mi></mml:math></inline-formula>. In one-dimensional space (quantum mechanics), the energy spectrum is calculated in the semiclassical limit and the <inline-formula><mml:math display="inline"><mml:mi>m</mml:mi></mml:math></inline-formula>th energy level in the <inline-formula><mml:math display="inline"><mml:mi>n</mml:mi></mml:math></inline-formula>th sector is given by <inline-formula><mml:math display="inline"><mml:msub><mml:mi>E</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>∼</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>m</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn><mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:msup><mml:mi>a</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo stretchy="false">/</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mn>16</mml:mn><mml:msup><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula>.</p>Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\phi$. In Euclidean space the Lagrangian of such a theory, $L=\frac{1}{2}(\nabla\phi)^2-ig\phi\exp(ia\phi)$, is analyzed using the techniques of PT-symmetric quantum theory. It is shown that L defines an infinite number of unitarily inequivalent sectors of the theory labeled by the integer n. In one-dimensional space (quantum mechanics) the energy spectrum is calculated in the semiclassical limit and the mth energy level in the nth sector is given by $E_{m,n}\sim(m+1/2)^2a^2/(16n^2)$.arXiv:1408.2432PREPRINT-KCL-PH-TH-2014-27LCTS-2014-26PREPRINT KCL-PH-TH-2014-27oai:cds.cern.ch:17489552014-08-11
spellingShingle Particle Physics - Theory
Bender, Carl M.
Hook, Daniel W.
Mavromatos, Nick E.
Sarkar, Sarben
Infinitely many inequivalent field theories from one Lagrangian
title Infinitely many inequivalent field theories from one Lagrangian
title_full Infinitely many inequivalent field theories from one Lagrangian
title_fullStr Infinitely many inequivalent field theories from one Lagrangian
title_full_unstemmed Infinitely many inequivalent field theories from one Lagrangian
title_short Infinitely many inequivalent field theories from one Lagrangian
title_sort infinitely many inequivalent field theories from one lagrangian
topic Particle Physics - Theory
url https://dx.doi.org/10.1103/PhysRevLett.113.231605
http://cds.cern.ch/record/1748955
work_keys_str_mv AT bendercarlm infinitelymanyinequivalentfieldtheoriesfromonelagrangian
AT hookdanielw infinitelymanyinequivalentfieldtheoriesfromonelagrangian
AT mavromatosnicke infinitelymanyinequivalentfieldtheoriesfromonelagrangian
AT sarkarsarben infinitelymanyinequivalentfieldtheoriesfromonelagrangian