Cargando…
Future Upgrade and Physics Perspectives of the ALICE TPC
The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN~3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and P...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nuclphysa.2014.08.027 http://cds.cern.ch/record/1750548 |
_version_ | 1780943113970253824 |
---|---|
author | Gunji, Taku |
author_facet | Gunji, Taku |
author_sort | Gunji, Taku |
collection | CERN |
description | The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN~3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R\&D employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this paper, the expected detector performance and the status of the R\&D program to achieve this ambitious goal are described. |
id | cern-1750548 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
record_format | invenio |
spelling | cern-17505482021-05-03T20:25:05Zdoi:10.1016/j.nuclphysa.2014.08.027http://cds.cern.ch/record/1750548engGunji, TakuFuture Upgrade and Physics Perspectives of the ALICE TPCDetectors and Experimental TechniquesThe ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN~3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R\&D employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this paper, the expected detector performance and the status of the R\&D program to achieve this ambitious goal are described.The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN 3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R&D employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this paper, the expected detector performance and the status of the R&D program to achieve this ambitious goal are described.The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN~3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R\&D employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this paper, the expected detector performance and the status of the R\&D program to achieve this ambitious goal are described.The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN 3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R&D; employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this paper, the expected detector performance and the status of the R&D; program to achieve this ambitious goal are described.arXiv:1408.3484oai:cds.cern.ch:17505482014-08-15 |
spellingShingle | Detectors and Experimental Techniques Gunji, Taku Future Upgrade and Physics Perspectives of the ALICE TPC |
title | Future Upgrade and Physics Perspectives of the ALICE TPC |
title_full | Future Upgrade and Physics Perspectives of the ALICE TPC |
title_fullStr | Future Upgrade and Physics Perspectives of the ALICE TPC |
title_full_unstemmed | Future Upgrade and Physics Perspectives of the ALICE TPC |
title_short | Future Upgrade and Physics Perspectives of the ALICE TPC |
title_sort | future upgrade and physics perspectives of the alice tpc |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1016/j.nuclphysa.2014.08.027 http://cds.cern.ch/record/1750548 |
work_keys_str_mv | AT gunjitaku futureupgradeandphysicsperspectivesofthealicetpc |