Cargando…
Optimization Studies for the H $\rightarrow$ WW Boosted Decision Tree Analysis
The aim of this project was to follow the ATLAS $H \rightarrow WW$ BDT analysis and try to optimize training variables, pre-selection cuts, and training parameters such as the depth \cite{orig, spin}. Machine learning was done with Monte Carlo samples of the $H \rightarrow W^+ W^- \rightarrow e \mu...
Autor principal: | Strickland, Jessica |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1752226 |
Ejemplares similares
-
Study of $H\rightarrow WW^(*)$ events with the ATLAS detector
por: Bortolotto, V
Publicado: (2014) -
VH with H$\rightarrow$WW$\rightarrow\ell\nu\ell\nu$ and V$\rightarrow$jj
por: CMS Collaboration
Publicado: (2013) -
VH with H$\rightarrow$WW$\rightarrow\ell\nu\ell\nu$ and V$\rightarrow$jj
por: CMS Collaboration
Publicado: (2012) -
Boosted Regression Trees in the H$\rightarrow \tau\tau$ decay channel
por: Hedrich, Natascha Sylvia
Publicado: (2013) -
Search for H->WW Based on Boosted Decision Trees
por: Yang, H
Publicado: (2008)