Cargando…
SIMPle Dark Matter: Self-Interactions and keV Lines
We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass $m_X$ and hidden glueballs with mass near the confinement scale $\Lambda$. For $m_X \sim 1\,\text{TeV}$ and $\Lambda \sim 100\,\text{MeV}$, the glueballinos freeze out...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.90.095016 http://cds.cern.ch/record/1752287 |
Sumario: | We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass $m_X$ and hidden glueballs with mass near the confinement scale $\Lambda$. For $m_X \sim 1\,\text{TeV}$ and $\Lambda \sim 100\,\text{MeV}$, the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order $\Lambda^2 / m_X \sim 10\,\text{keV}$. We show that the radiative decays of the excited state can explain the observed 3.5 keV X-ray line signal from clusters of galaxies, Andromeda, and the Milky Way. |
---|