Cargando…
Catching sparks from well-forged neutralinos
In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino se...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.90.095008 http://cds.cern.ch/record/1752392 |
_version_ | 1780943180643958784 |
---|---|
author | Bramante, Joseph Delgado, Antonio Elahi, Fatemeh Martin, Adam Ostdiek, Bryan |
author_facet | Bramante, Joseph Delgado, Antonio Elahi, Fatemeh Martin, Adam Ostdiek, Bryan |
author_sort | Bramante, Joseph |
collection | CERN |
description | In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino searches, which perform best when $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1}, m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0_1} > m_Z$, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut $m_{\ell\ell} \ll m_Z$ effectively removes on-shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for `well-tempered' scenarios, where the dark matter relic abundance is achieved with inter-electroweakino splittings of $\sim 20 - 70\,\text{GeV}$. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter -- a spectrum we dub `well-forged'. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with $m_{\widetilde{\chi}^0_{2,3}} \lesssim 190\,\text{GeV}$ and $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1} \cong 30\,\text{GeV}$ can be uncovered after roughly $600\,\text{fb}^{-1}$ of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery. |
id | cern-1752392 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
record_format | invenio |
spelling | cern-17523922022-08-13T02:25:27Zdoi:10.1103/PhysRevD.90.095008http://cds.cern.ch/record/1752392engBramante, JosephDelgado, AntonioElahi, FatemehMartin, AdamOstdiek, BryanCatching sparks from well-forged neutralinosParticle Physics - PhenomenologyIn this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino searches, which perform best when $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1}, m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0_1} > m_Z$, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut $m_{\ell\ell} \ll m_Z$ effectively removes on-shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for `well-tempered' scenarios, where the dark matter relic abundance is achieved with inter-electroweakino splittings of $\sim 20 - 70\,\text{GeV}$. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter -- a spectrum we dub `well-forged'. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with $m_{\widetilde{\chi}^0_{2,3}} \lesssim 190\,\text{GeV}$ and $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1} \cong 30\,\text{GeV}$ can be uncovered after roughly $600\,\text{fb}^{-1}$ of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.<p>In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, <inline-formula><mml:math display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mo>ℓ</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo>ℓ</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>γ</mml:mi><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:menclose notation="updiagonalstrike" other=" width 7pt height 7.5pt depth 0.5pt"><mml:mrow><mml:mi>E</mml:mi></mml:mrow></mml:menclose></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula>. Unlike traditional electroweakino searches, which perform best when <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mspace linebreak="goodbreak"/><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>></mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>Z</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula>, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut <inline-formula><mml:math display="inline"><mml:msub><mml:mi>m</mml:mi><mml:mrow><mml:mo>ℓ</mml:mo><mml:mo>ℓ</mml:mo></mml:mrow></mml:msub><mml:mo>≪</mml:mo><mml:msub><mml:mi>m</mml:mi><mml:mi>Z</mml:mi></mml:msub></mml:math></inline-formula> effectively removes on shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for “well-tempered” scenarios, where the dark matter relic abundance is achieved with interelectroweakino splittings of <inline-formula><mml:math display="inline"><mml:mrow><mml:mo>∼</mml:mo><mml:mn>20</mml:mn><mml:mi>–</mml:mi><mml:mn>70</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula>. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter—a spectrum we dub well forged. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>≲</mml:mo><mml:mn>190</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>≅</mml:mo><mml:mn>30</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula> can be uncovered after roughly <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>600</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:msup><mml:mrow><mml:mi>fb</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></inline-formula> of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.</p>In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino searches, which perform best when $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1}, m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0_1} > m_Z$, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut $m_{\ell\ell} \ll m_Z$ effectively removes on-shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for `well-tempered' scenarios, where the dark matter relic abundance is achieved with inter-electroweakino splittings of $\sim 20 - 70\,\text{GeV}$. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter -- a spectrum we dub `well-forged'. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with $m_{\widetilde{\chi}^0_{2,3}} \lesssim 190\,\text{GeV}$ and $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1} \cong 30\,\text{GeV}$ can be uncovered after roughly $600\,\text{fb}^{-1}$ of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.arXiv:1408.6530CERN-PH-TH-2014-164CERN-PH-TH-2014-164oai:cds.cern.ch:17523922014-08-27 |
spellingShingle | Particle Physics - Phenomenology Bramante, Joseph Delgado, Antonio Elahi, Fatemeh Martin, Adam Ostdiek, Bryan Catching sparks from well-forged neutralinos |
title | Catching sparks from well-forged neutralinos |
title_full | Catching sparks from well-forged neutralinos |
title_fullStr | Catching sparks from well-forged neutralinos |
title_full_unstemmed | Catching sparks from well-forged neutralinos |
title_short | Catching sparks from well-forged neutralinos |
title_sort | catching sparks from well-forged neutralinos |
topic | Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1103/PhysRevD.90.095008 http://cds.cern.ch/record/1752392 |
work_keys_str_mv | AT bramantejoseph catchingsparksfromwellforgedneutralinos AT delgadoantonio catchingsparksfromwellforgedneutralinos AT elahifatemeh catchingsparksfromwellforgedneutralinos AT martinadam catchingsparksfromwellforgedneutralinos AT ostdiekbryan catchingsparksfromwellforgedneutralinos |