Cargando…

Catching sparks from well-forged neutralinos

In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino se...

Descripción completa

Detalles Bibliográficos
Autores principales: Bramante, Joseph, Delgado, Antonio, Elahi, Fatemeh, Martin, Adam, Ostdiek, Bryan
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.90.095008
http://cds.cern.ch/record/1752392
_version_ 1780943180643958784
author Bramante, Joseph
Delgado, Antonio
Elahi, Fatemeh
Martin, Adam
Ostdiek, Bryan
author_facet Bramante, Joseph
Delgado, Antonio
Elahi, Fatemeh
Martin, Adam
Ostdiek, Bryan
author_sort Bramante, Joseph
collection CERN
description In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino searches, which perform best when $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1}, m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0_1} > m_Z$, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut $m_{\ell\ell} \ll m_Z$ effectively removes on-shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for `well-tempered' scenarios, where the dark matter relic abundance is achieved with inter-electroweakino splittings of $\sim 20 - 70\,\text{GeV}$. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter -- a spectrum we dub `well-forged'. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with $m_{\widetilde{\chi}^0_{2,3}} \lesssim 190\,\text{GeV}$ and $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1} \cong 30\,\text{GeV}$ can be uncovered after roughly $600\,\text{fb}^{-1}$ of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.
id cern-1752392
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
record_format invenio
spelling cern-17523922022-08-13T02:25:27Zdoi:10.1103/PhysRevD.90.095008http://cds.cern.ch/record/1752392engBramante, JosephDelgado, AntonioElahi, FatemehMartin, AdamOstdiek, BryanCatching sparks from well-forged neutralinosParticle Physics - PhenomenologyIn this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino searches, which perform best when $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1}, m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0_1} > m_Z$, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut $m_{\ell\ell} \ll m_Z$ effectively removes on-shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for `well-tempered' scenarios, where the dark matter relic abundance is achieved with inter-electroweakino splittings of $\sim 20 - 70\,\text{GeV}$. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter -- a spectrum we dub `well-forged'. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with $m_{\widetilde{\chi}^0_{2,3}} \lesssim 190\,\text{GeV}$ and $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1} \cong 30\,\text{GeV}$ can be uncovered after roughly $600\,\text{fb}^{-1}$ of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.<p>In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, <inline-formula><mml:math display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mo>ℓ</mml:mo></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo>ℓ</mml:mo></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>γ</mml:mi><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:menclose notation="updiagonalstrike" other=" width 7pt height 7.5pt depth 0.5pt"><mml:mrow><mml:mi>E</mml:mi></mml:mrow></mml:menclose></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula>. Unlike traditional electroweakino searches, which perform best when <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mspace linebreak="goodbreak"/><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>&gt;</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>Z</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula>, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut <inline-formula><mml:math display="inline"><mml:msub><mml:mi>m</mml:mi><mml:mrow><mml:mo>ℓ</mml:mo><mml:mo>ℓ</mml:mo></mml:mrow></mml:msub><mml:mo>≪</mml:mo><mml:msub><mml:mi>m</mml:mi><mml:mi>Z</mml:mi></mml:msub></mml:math></inline-formula> effectively removes on shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for “well-tempered” scenarios, where the dark matter relic abundance is achieved with interelectroweakino splittings of <inline-formula><mml:math display="inline"><mml:mrow><mml:mo>∼</mml:mo><mml:mn>20</mml:mn><mml:mi>–</mml:mi><mml:mn>70</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula>. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter—a spectrum we dub well forged. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>≲</mml:mo><mml:mn>190</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula> and <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>-</mml:mo><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo accent="true" stretchy="false">˜</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:msub><mml:mo>≅</mml:mo><mml:mn>30</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula> can be uncovered after roughly <inline-formula><mml:math display="inline"><mml:mrow><mml:mn>600</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:msup><mml:mrow><mml:mi>fb</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></inline-formula> of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.</p>In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, $\ell^+\,\ell^- + \gamma + \displaystyle{\not} E_T$. Unlike traditional electroweakino searches, which perform best when $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1}, m_{\widetilde{\chi}^{\pm}} - m_{\widetilde{\chi}^0_1} > m_Z$, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut $m_{\ell\ell} \ll m_Z$ effectively removes on-shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for `well-tempered' scenarios, where the dark matter relic abundance is achieved with inter-electroweakino splittings of $\sim 20 - 70\,\text{GeV}$. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter -- a spectrum we dub `well-forged'. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with $m_{\widetilde{\chi}^0_{2,3}} \lesssim 190\,\text{GeV}$ and $m_{\widetilde{\chi}^0_{2,3}} - m_{\widetilde{\chi}^0_1} \cong 30\,\text{GeV}$ can be uncovered after roughly $600\,\text{fb}^{-1}$ of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.arXiv:1408.6530CERN-PH-TH-2014-164CERN-PH-TH-2014-164oai:cds.cern.ch:17523922014-08-27
spellingShingle Particle Physics - Phenomenology
Bramante, Joseph
Delgado, Antonio
Elahi, Fatemeh
Martin, Adam
Ostdiek, Bryan
Catching sparks from well-forged neutralinos
title Catching sparks from well-forged neutralinos
title_full Catching sparks from well-forged neutralinos
title_fullStr Catching sparks from well-forged neutralinos
title_full_unstemmed Catching sparks from well-forged neutralinos
title_short Catching sparks from well-forged neutralinos
title_sort catching sparks from well-forged neutralinos
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.90.095008
http://cds.cern.ch/record/1752392
work_keys_str_mv AT bramantejoseph catchingsparksfromwellforgedneutralinos
AT delgadoantonio catchingsparksfromwellforgedneutralinos
AT elahifatemeh catchingsparksfromwellforgedneutralinos
AT martinadam catchingsparksfromwellforgedneutralinos
AT ostdiekbryan catchingsparksfromwellforgedneutralinos