Cargando…

AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

Plasma wakefield acceleration is a promising alternative reaching accelerating fields a magnitude of up to 3 higher (GV/m) when compared to conventional RF acceleration. AWAKE, world’s first proton-driven plasma wakefield experiment, was launched at CERN to verify this concept. In this experiment...

Descripción completa

Detalles Bibliográficos
Autor principal: Gschwendtner, E
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:http://cds.cern.ch/record/1754429
Descripción
Sumario:Plasma wakefield acceleration is a promising alternative reaching accelerating fields a magnitude of up to 3 higher (GV/m) when compared to conventional RF acceleration. AWAKE, world’s first proton-driven plasma wakefield experiment, was launched at CERN to verify this concept. In this experiment proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent to the plasma cell, where the proton beam drives the plasma wakefields and creates a large accelerating field. This large gradient of ~GV/m can be achieved by relying on the self-modulation instability (SMI) of the proton beam; when seeded by ionization through a short laser pulse, a train of micro-bunches with a period on the order of the plasma wavelength (~mm) develops, which can drive such a large amplitude wake from a long proton bunch (~12 cm). An electron beam will be injected into the plasma to probe the accelerating wakefield. The AWAKE experiment is being installed at CERN in the former CNGS facility, which must be modified to match the AWAKE requirements. First proton beam to the plasma cell is expected by end 2016.