Cargando…
The front-end hybrid for the ATLAS HL-LHC silicon strip tracker
For the HL-LHC, ATLAS [1] will install a new all-silicon tracking system. The strip part will be comprised of five barrel layers and seven end cap disks on each side. The detectors will be connected to highly integrated, low mass front-end electronic hybrids with custom-made ASICs in 130 nm CMOS tec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/9/02/C02027 http://cds.cern.ch/record/1951835 |
Sumario: | For the HL-LHC, ATLAS [1] will install a new all-silicon tracking system. The strip part will be comprised of five barrel layers and seven end cap disks on each side. The detectors will be connected to highly integrated, low mass front-end electronic hybrids with custom-made ASICs in 130 nm CMOS technology. The hybrids will be flexible four layer copper polyimide constructions. They will be designed and populated at the universities involved, while the flexible PCBs will be produced in industry. This paper describes the evolution of hybrid designs for the barrel and end cap, discusses their electrical performance, and presents results from prototype modules made with the hybrids. |
---|