Cargando…
Shell structure of potassium isotopes deduced from their magnetic moments
$\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\ \\ $\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevC.90.034321 http://cds.cern.ch/record/1952722 |
_version_ | 1780944341299101696 |
---|---|
author | Papuga, J. Bissell, M L Kreim, K Barbieri, C Blaum, K De Rydt, M Duguet, T Garcia Ruiz, R F Heylen, H Kowalska, M Neugart, R Neyens, G Nortershauser, W Rajabali, M M Sanchez, R Smirnova, N Soma, V Yordanov, D T |
author_facet | Papuga, J. Bissell, M L Kreim, K Barbieri, C Blaum, K De Rydt, M Duguet, T Garcia Ruiz, R F Heylen, H Kowalska, M Neugart, R Neyens, G Nortershauser, W Rajabali, M M Sanchez, R Smirnova, N Soma, V Yordanov, D T |
author_sort | Papuga, J. |
collection | CERN |
description | $\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\ \\ $\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\ \\ $\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\ \\ $\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\textit{ab initio}$ framework is also presented. \\ \\ $\textbf{Conclusions:}$ The dominant component of the wave function for the odd-$A$ isotopes up to $^{45}$K is a $\pi 1d_{3/2}^{-1}$ hole. For $^{47,49}$K, the main component originates from a $\pi 2s_{1/2}^{-1}$ hole configuration and it inverts back to the $\pi 1d_{3/2}^{-1}$ in $^{51}$K. For all even-$A$ isotopes, the dominant configuration arises from a $\pi 1d_{3/2}^{-1}$ hole coupled to a neutron in the $\nu 1f_{7/2}$ or $\nu 2p_{3/2}$ orbitals. Only for $^{48}$K, a significant amount of mixing with $\pi 2s_{1/2}^{-1} \otimes \nu (pf)$ is observed leading to a $I^{\pi}=1^{-}$ ground state. For $^{50}$K, the ground-state spin-parity is $0^-$ with leading configuration $\pi 1d_{3/2}^{-1} \otimes \nu 2p_{3/2}^{-1}$. |
id | cern-1952722 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
record_format | invenio |
spelling | cern-19527222021-05-03T20:12:54Zdoi:10.1103/PhysRevC.90.034321http://cds.cern.ch/record/1952722engPapuga, J.Bissell, M LKreim, KBarbieri, CBlaum, KDe Rydt, MDuguet, TGarcia Ruiz, R FHeylen, HKowalska, MNeugart, RNeyens, GNortershauser, WRajabali, M MSanchez, RSmirnova, NSoma, VYordanov, D TShell structure of potassium isotopes deduced from their magnetic momentsNuclear Physics - Experiment$\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\ \\ $\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\ \\ $\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\ \\ $\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\textit{ab initio}$ framework is also presented. \\ \\ $\textbf{Conclusions:}$ The dominant component of the wave function for the odd-$A$ isotopes up to $^{45}$K is a $\pi 1d_{3/2}^{-1}$ hole. For $^{47,49}$K, the main component originates from a $\pi 2s_{1/2}^{-1}$ hole configuration and it inverts back to the $\pi 1d_{3/2}^{-1}$ in $^{51}$K. For all even-$A$ isotopes, the dominant configuration arises from a $\pi 1d_{3/2}^{-1}$ hole coupled to a neutron in the $\nu 1f_{7/2}$ or $\nu 2p_{3/2}$ orbitals. Only for $^{48}$K, a significant amount of mixing with $\pi 2s_{1/2}^{-1} \otimes \nu (pf)$ is observed leading to a $I^{\pi}=1^{-}$ ground state. For $^{50}$K, the ground-state spin-parity is $0^-$ with leading configuration $\pi 1d_{3/2}^{-1} \otimes \nu 2p_{3/2}^{-1}$.\item[Background] Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \item[Purpose] Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \item[Method] High-resolution collinear laser spectroscopy on bunched atomic beams. \item[Results] From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and {\it{ab initio}} framework is also presented. \item[Conclusions] The dominant component of the wave function for the odd-$A$ isotopes up to $^{45}$K is a $\pi 1d_{3/2}^{-1}$ hole. For $^{47,49}$K, the main component originates from a $\pi 2s_{1/2}^{-1}$ hole configuration and it inverts back to the $\pi 1d_{3/2}^{-1}$ in $^{51}$K. For all even-$A$ isotopes, the dominant configuration arises from a $\pi 1d_{3/2}^{-1}$ hole coupled to a neutron in the $\nu 1f_{7/2}$ or $\nu 2p_{3/2}$ orbitals. Only for $^{48}$K, a significant amount of mixing with $\pi 2s_{1/2}^{-1} \otimes \nu (pf)$ is observed leading to a $I^{\pi}=1^{-}$ ground state. For $^{50}$K, the ground-state spin-parity is $0^-$ with leading configuration $\pi 1d_{3/2}^{-1} \otimes \nu 2p_{3/2}^{-1}$.<p><bold>Background:</bold> Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability.</p> <p><bold>Purpose:</bold> Extend our knowledge about the evolution of the <inline-formula><mml:math><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math></inline-formula> and <inline-formula><mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math></inline-formula> states for K isotopes beyond the <inline-formula><mml:math><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>28</mml:mn></mml:mrow></mml:math></inline-formula> shell gap.</p> <p><bold>Method:</bold> High-resolution collinear laser spectroscopy on bunched atomic beams.</p> <p><bold>Results:</bold> From measured hyperfine structure spectra of K isotopes, nuclear spins, and magnetic moments of the ground states were obtained for isotopes from <inline-formula><mml:math><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>19</mml:mn></mml:mrow></mml:math></inline-formula> up to <inline-formula><mml:math><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>32</mml:mn></mml:mrow></mml:math></inline-formula>. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton <inline-formula><mml:math><mml:mrow><mml:mn>1</mml:mn><mml:msub><mml:mi>d</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula> and <inline-formula><mml:math><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula> in the shell model and <italic>ab initio</italic> framework is also presented.</p> <p><bold>Conclusions:</bold> The dominant component of the wave function for the odd-<inline-formula><mml:math><mml:mi>A</mml:mi></mml:math></inline-formula> isotopes up to <inline-formula><mml:math><mml:mmultiscripts><mml:mi mathvariant="normal">K</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>45</mml:mn></mml:mrow></mml:mmultiscripts></mml:math></inline-formula> is a <inline-formula><mml:math><mml:mrow><mml:mi>π</mml:mi><mml:mn>1</mml:mn><mml:msubsup><mml:mi>d</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula> hole. For <inline-formula><mml:math><mml:mmultiscripts><mml:mi mathvariant="normal">K</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>47</mml:mn><mml:mo>,</mml:mo><mml:mn>49</mml:mn></mml:mrow></mml:mmultiscripts></mml:math></inline-formula>, the main component originates from a <inline-formula><mml:math><mml:mrow><mml:mi>π</mml:mi><mml:mn>2</mml:mn><mml:msubsup><mml:mi>s</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula> hole configuration and it inverts back to the <inline-formula><mml:math><mml:mrow><mml:mi>π</mml:mi><mml:mn>1</mml:mn><mml:msubsup><mml:mi>d</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula> in <inline-formula><mml:math><mml:mmultiscripts><mml:mi mathvariant="normal">K</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>51</mml:mn></mml:mrow></mml:mmultiscripts></mml:math></inline-formula>. For all even-<inline-formula><mml:math><mml:mi>A</mml:mi></mml:math></inline-formula> isotopes, the dominant configuration arises from a <inline-formula><mml:math><mml:mrow><mml:mi>π</mml:mi><mml:mn>1</mml:mn><mml:msubsup><mml:mi>d</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula> hole coupled to a neutron in the <inline-formula><mml:math><mml:mrow><mml:mi>ν</mml:mi><mml:mn>1</mml:mn><mml:msub><mml:mi>f</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula> or <inline-formula><mml:math><mml:mrow><mml:mi>ν</mml:mi><mml:mn>2</mml:mn><mml:msub><mml:mi>p</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math></inline-formula> orbitals. Only for <inline-formula><mml:math><mml:mmultiscripts><mml:mi mathvariant="normal">K</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>48</mml:mn></mml:mrow></mml:mmultiscripts></mml:math></inline-formula>, a significant amount of mixing with <inline-formula><mml:math><mml:mrow><mml:mi>π</mml:mi><mml:mn>2</mml:mn><mml:msubsup><mml:mi>s</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo>⊗</mml:mo><mml:mi>ν</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mi>f</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math></inline-formula> is observed leading to a <inline-formula><mml:math><mml:mrow><mml:msup><mml:mi>I</mml:mi><mml:mi>π</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mn>1</mml:mn><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math></inline-formula> ground state. For <inline-formula><mml:math><mml:mmultiscripts><mml:mi mathvariant="normal">K</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>50</mml:mn></mml:mrow></mml:mmultiscripts></mml:math></inline-formula>, the ground-state spin-parity is <inline-formula><mml:math><mml:msup><mml:mn>0</mml:mn><mml:mo>−</mml:mo></mml:msup></mml:math></inline-formula> with leading configuration <inline-formula><mml:math><mml:mrow><mml:mi>π</mml:mi><mml:mn>1</mml:mn><mml:msubsup><mml:mi>d</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup><mml:mo>⊗</mml:mo><mml:mi>ν</mml:mi><mml:mn>2</mml:mn><mml:msubsup><mml:mi>p</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula>.</p>arXiv:1410.0895CERN-ISOLDE-2015-007CERN-ISOLDE-2015-007oai:cds.cern.ch:19527222014-10-03 |
spellingShingle | Nuclear Physics - Experiment Papuga, J. Bissell, M L Kreim, K Barbieri, C Blaum, K De Rydt, M Duguet, T Garcia Ruiz, R F Heylen, H Kowalska, M Neugart, R Neyens, G Nortershauser, W Rajabali, M M Sanchez, R Smirnova, N Soma, V Yordanov, D T Shell structure of potassium isotopes deduced from their magnetic moments |
title | Shell structure of potassium isotopes deduced from their magnetic moments |
title_full | Shell structure of potassium isotopes deduced from their magnetic moments |
title_fullStr | Shell structure of potassium isotopes deduced from their magnetic moments |
title_full_unstemmed | Shell structure of potassium isotopes deduced from their magnetic moments |
title_short | Shell structure of potassium isotopes deduced from their magnetic moments |
title_sort | shell structure of potassium isotopes deduced from their magnetic moments |
topic | Nuclear Physics - Experiment |
url | https://dx.doi.org/10.1103/PhysRevC.90.034321 http://cds.cern.ch/record/1952722 |
work_keys_str_mv | AT papugaj shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT bissellml shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT kreimk shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT barbieric shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT blaumk shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT derydtm shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT duguett shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT garciaruizrf shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT heylenh shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT kowalskam shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT neugartr shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT neyensg shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT nortershauserw shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT rajabalimm shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT sanchezr shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT smirnovan shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT somav shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments AT yordanovdt shellstructureofpotassiumisotopesdeducedfromtheirmagneticmoments |