Cargando…
High accuracy determination of the $^{238}$U/$^{235}$U fission cross section ratio up to $\sim$1 GeV at n_TOF (CERN)
The $^{238}$U to $^{235}$U fission cross section ratio has been determined at n_TOF up to $\sim$1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets have been collected and compared. They are all consistent to each other within the relative s...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevC.91.024602 http://cds.cern.ch/record/1958125 |
Sumario: | The $^{238}$U to $^{235}$U fission cross section ratio has been determined at n_TOF up to $\sim$1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets have been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of the neutron energy. The result confirms current evaluations up to 200 MeV. A good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solving a long-standing discrepancy between the two most important experimental dataset available so far above 20 MeV, while extending the neutron energy range for the first time up to $\sim$1 GeV. |
---|