Cargando…

Art meets mathematics in the fourth dimension

To see objects that live in the fourth dimension we humans would need to add a fourth dimension to our three-dimensional vision. An example of such an object that lives in the fourth dimension is a hyper-sphere or “3-sphere”. The quest to imagine the elusive 3-sphere has deep historical roots: medie...

Descripción completa

Detalles Bibliográficos
Autor principal: Lipscomb, Stephen Leon
Lenguaje:eng
Publicado: Springer 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-06254-9
http://cds.cern.ch/record/1968830
_version_ 1780944701563600896
author Lipscomb, Stephen Leon
author_facet Lipscomb, Stephen Leon
author_sort Lipscomb, Stephen Leon
collection CERN
description To see objects that live in the fourth dimension we humans would need to add a fourth dimension to our three-dimensional vision. An example of such an object that lives in the fourth dimension is a hyper-sphere or “3-sphere”. The quest to imagine the elusive 3-sphere has deep historical roots: medieval poet Dante Alighieri, in his circa 1300 AD Divine Comedy, used a 3-sphere to convey his allegorical vision of the Christian afterlife. In 1917, Albert Einstein visualized the universe, at each instant in time, as a 3-sphere. He described his representation as “…the place where the reader’s imagination boggles. Nobody can imagine this thing.” Over time, however, our understanding of the concept of dimension evolved. By 2003, a researcher had successfully rendered into human vision the structure of a 4-web (think of an every increasingly-dense spider’s web). In this text Stephen Lipscomb takes his innovative dimension theory research a step further, using the 4-web to reveal a new partial image of a 3-sphere. Illustrations support the reader’s understanding of the mathematics behind this process. Lipscomb describes a computer program that can produce partial images of a 3-sphere and suggests methods of discerning other fourth-dimensional objects that may serve as the basis for future artwork.  Reviews The author’s notion of fractal-based computer art is fascinating-a clear expression of our technological age. With the color plates in this book and the available DVD animation the reader will not only substantiate this, but will also gain an intuitive sense about the nature of fractals and about the structure and origin of the 4-web. A.D. Parks, Ph.D., Principal Scientist, Head of Quantum Physics Group, Naval Surface Warfare Center, Dahlgren Virginia Using numerous illustrations, the author discusses the idea of a fourth dimension. The new feature here is his use of an object that up until recently lived only in the fourth dimension. This book should become useful, educational, and widely-read. Gerald Edgar, Professor (Emeritus) of Mathematics, The Ohio State University  I have read many books, but only a couple has been as suggestive in terms of connections between mathematics, art, and physics as this book. It will be exceptionally well received. John E. Gray, Senior Member of IEEE, Lead physicist (over 130 publications)  An accessible yet rigorous treatment of recent mathematical research, this book is particularly valuable since its author developed these concepts originally. J. Larry Lehman, Professor of Mathematics, University of Mary Washington
id cern-1968830
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher Springer
record_format invenio
spelling cern-19688302021-04-21T20:49:41Zdoi:10.1007/978-3-319-06254-9http://cds.cern.ch/record/1968830engLipscomb, Stephen LeonArt meets mathematics in the fourth dimensionMathematical Physics and MathematicsTo see objects that live in the fourth dimension we humans would need to add a fourth dimension to our three-dimensional vision. An example of such an object that lives in the fourth dimension is a hyper-sphere or “3-sphere”. The quest to imagine the elusive 3-sphere has deep historical roots: medieval poet Dante Alighieri, in his circa 1300 AD Divine Comedy, used a 3-sphere to convey his allegorical vision of the Christian afterlife. In 1917, Albert Einstein visualized the universe, at each instant in time, as a 3-sphere. He described his representation as “…the place where the reader’s imagination boggles. Nobody can imagine this thing.” Over time, however, our understanding of the concept of dimension evolved. By 2003, a researcher had successfully rendered into human vision the structure of a 4-web (think of an every increasingly-dense spider’s web). In this text Stephen Lipscomb takes his innovative dimension theory research a step further, using the 4-web to reveal a new partial image of a 3-sphere. Illustrations support the reader’s understanding of the mathematics behind this process. Lipscomb describes a computer program that can produce partial images of a 3-sphere and suggests methods of discerning other fourth-dimensional objects that may serve as the basis for future artwork.  Reviews The author’s notion of fractal-based computer art is fascinating-a clear expression of our technological age. With the color plates in this book and the available DVD animation the reader will not only substantiate this, but will also gain an intuitive sense about the nature of fractals and about the structure and origin of the 4-web. A.D. Parks, Ph.D., Principal Scientist, Head of Quantum Physics Group, Naval Surface Warfare Center, Dahlgren Virginia Using numerous illustrations, the author discusses the idea of a fourth dimension. The new feature here is his use of an object that up until recently lived only in the fourth dimension. This book should become useful, educational, and widely-read. Gerald Edgar, Professor (Emeritus) of Mathematics, The Ohio State University  I have read many books, but only a couple has been as suggestive in terms of connections between mathematics, art, and physics as this book. It will be exceptionally well received. John E. Gray, Senior Member of IEEE, Lead physicist (over 130 publications)  An accessible yet rigorous treatment of recent mathematical research, this book is particularly valuable since its author developed these concepts originally. J. Larry Lehman, Professor of Mathematics, University of Mary WashingtonSpringeroai:cds.cern.ch:19688302014
spellingShingle Mathematical Physics and Mathematics
Lipscomb, Stephen Leon
Art meets mathematics in the fourth dimension
title Art meets mathematics in the fourth dimension
title_full Art meets mathematics in the fourth dimension
title_fullStr Art meets mathematics in the fourth dimension
title_full_unstemmed Art meets mathematics in the fourth dimension
title_short Art meets mathematics in the fourth dimension
title_sort art meets mathematics in the fourth dimension
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-06254-9
http://cds.cern.ch/record/1968830
work_keys_str_mv AT lipscombstephenleon artmeetsmathematicsinthefourthdimension