Cargando…

Evolution of particle composition in CLOUD nucleation experiments

Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Keskinen, H, Virtanen, A, Joutsensaari, J, Tsagkogeorgas, G, Duplissy, J, Schobesberger, S, Gysel, M, Riccobono, F, Bianchi, F, Yli-Juuti, T, Lehtipalo, K, Rondo, L, Breitenlechner, M, Kupc, A, Almeida, J, Amorim, A, Dunne, E M, Downard, A J, Ehrhart, S, Franchin, A, Kajos, M K, Kirkby, J, Kurten, A, Nieminen, T, Makhmutov, V, Mathot, S, Miettinen, P, Onnela, A, Petaja, T, Praplan, A, Santos, F D, Schallhart, S, Sipila, M, Stozhkov, Y, Tome, A, Vaattovaara, P, Wimmer, D, Prevot, A, Dommen, J, Donahue, N M, Flagan, R C, Weingartner, E, Viisanen, Y, Riipinen, I, Hansel, A, Curtius, J, Kulmala, M, Worsnop, D R, Baltensperger, U, Wex, H, Stratmann, F, Laaksonen, A, Slowik, J G
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.5194/acp-13-5587-2013
http://cds.cern.ch/record/1972004
_version_ 1780944862394187776
author Keskinen, H
Virtanen, A
Joutsensaari, J
Tsagkogeorgas, G
Duplissy, J
Schobesberger, S
Gysel, M
Riccobono, F
Bianchi, F
Yli-Juuti, T
Lehtipalo, K
Rondo, L
Breitenlechner, M
Kupc, A
Almeida, J
Amorim, A
Dunne, E M
Downard, A J
Ehrhart, S
Franchin, A
Kajos, M K
Kirkby, J
Kurten, A
Nieminen, T
Makhmutov, V
Mathot, S
Miettinen, P
Onnela, A
Petaja, T
Praplan, A
Santos, F D
Schallhart, S
Sipila, M
Stozhkov, Y
Tome, A
Vaattovaara, P
Wimmer, D
Prevot, A
Dommen, J
Donahue, N M
Flagan, R C
Weingartner, E
Viisanen, Y
Riipinen, I
Hansel, A
Curtius, J
Kulmala, M
Worsnop, D R
Baltensperger, U
Wex, H
Stratmann, F
Laaksonen, A
Slowik, J G
author_facet Keskinen, H
Virtanen, A
Joutsensaari, J
Tsagkogeorgas, G
Duplissy, J
Schobesberger, S
Gysel, M
Riccobono, F
Bianchi, F
Yli-Juuti, T
Lehtipalo, K
Rondo, L
Breitenlechner, M
Kupc, A
Almeida, J
Amorim, A
Dunne, E M
Downard, A J
Ehrhart, S
Franchin, A
Kajos, M K
Kirkby, J
Kurten, A
Nieminen, T
Makhmutov, V
Mathot, S
Miettinen, P
Onnela, A
Petaja, T
Praplan, A
Santos, F D
Schallhart, S
Sipila, M
Stozhkov, Y
Tome, A
Vaattovaara, P
Wimmer, D
Prevot, A
Dommen, J
Donahue, N M
Flagan, R C
Weingartner, E
Viisanen, Y
Riipinen, I
Hansel, A
Curtius, J
Kulmala, M
Worsnop, D R
Baltensperger, U
Wex, H
Stratmann, F
Laaksonen, A
Slowik, J G
author_sort Keskinen, H
collection CERN
description Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ∼ 0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.
id cern-1972004
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
record_format invenio
spelling cern-19720042019-09-30T06:29:59Zdoi:10.5194/acp-13-5587-2013http://cds.cern.ch/record/1972004engKeskinen, HVirtanen, AJoutsensaari, JTsagkogeorgas, GDuplissy, JSchobesberger, SGysel, MRiccobono, FBianchi, FYli-Juuti, TLehtipalo, KRondo, LBreitenlechner, MKupc, AAlmeida, JAmorim, ADunne, E MDownard, A JEhrhart, SFranchin, AKajos, M KKirkby, JKurten, ANieminen, TMakhmutov, VMathot, SMiettinen, POnnela, APetaja, TPraplan, ASantos, F DSchallhart, SSipila, MStozhkov, YTome, AVaattovaara, PWimmer, DPrevot, ADommen, JDonahue, N MFlagan, R CWeingartner, EViisanen, YRiipinen, IHansel, ACurtius, JKulmala, MWorsnop, D RBaltensperger, UWex, HStratmann, FLaaksonen, ASlowik, J GEvolution of particle composition in CLOUD nucleation experimentsChemical Physics and ChemistrySulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ∼ 0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.oai:cds.cern.ch:19720042013
spellingShingle Chemical Physics and Chemistry
Keskinen, H
Virtanen, A
Joutsensaari, J
Tsagkogeorgas, G
Duplissy, J
Schobesberger, S
Gysel, M
Riccobono, F
Bianchi, F
Yli-Juuti, T
Lehtipalo, K
Rondo, L
Breitenlechner, M
Kupc, A
Almeida, J
Amorim, A
Dunne, E M
Downard, A J
Ehrhart, S
Franchin, A
Kajos, M K
Kirkby, J
Kurten, A
Nieminen, T
Makhmutov, V
Mathot, S
Miettinen, P
Onnela, A
Petaja, T
Praplan, A
Santos, F D
Schallhart, S
Sipila, M
Stozhkov, Y
Tome, A
Vaattovaara, P
Wimmer, D
Prevot, A
Dommen, J
Donahue, N M
Flagan, R C
Weingartner, E
Viisanen, Y
Riipinen, I
Hansel, A
Curtius, J
Kulmala, M
Worsnop, D R
Baltensperger, U
Wex, H
Stratmann, F
Laaksonen, A
Slowik, J G
Evolution of particle composition in CLOUD nucleation experiments
title Evolution of particle composition in CLOUD nucleation experiments
title_full Evolution of particle composition in CLOUD nucleation experiments
title_fullStr Evolution of particle composition in CLOUD nucleation experiments
title_full_unstemmed Evolution of particle composition in CLOUD nucleation experiments
title_short Evolution of particle composition in CLOUD nucleation experiments
title_sort evolution of particle composition in cloud nucleation experiments
topic Chemical Physics and Chemistry
url https://dx.doi.org/10.5194/acp-13-5587-2013
http://cds.cern.ch/record/1972004
work_keys_str_mv AT keskinenh evolutionofparticlecompositionincloudnucleationexperiments
AT virtanena evolutionofparticlecompositionincloudnucleationexperiments
AT joutsensaarij evolutionofparticlecompositionincloudnucleationexperiments
AT tsagkogeorgasg evolutionofparticlecompositionincloudnucleationexperiments
AT duplissyj evolutionofparticlecompositionincloudnucleationexperiments
AT schobesbergers evolutionofparticlecompositionincloudnucleationexperiments
AT gyselm evolutionofparticlecompositionincloudnucleationexperiments
AT riccobonof evolutionofparticlecompositionincloudnucleationexperiments
AT bianchif evolutionofparticlecompositionincloudnucleationexperiments
AT ylijuutit evolutionofparticlecompositionincloudnucleationexperiments
AT lehtipalok evolutionofparticlecompositionincloudnucleationexperiments
AT rondol evolutionofparticlecompositionincloudnucleationexperiments
AT breitenlechnerm evolutionofparticlecompositionincloudnucleationexperiments
AT kupca evolutionofparticlecompositionincloudnucleationexperiments
AT almeidaj evolutionofparticlecompositionincloudnucleationexperiments
AT amorima evolutionofparticlecompositionincloudnucleationexperiments
AT dunneem evolutionofparticlecompositionincloudnucleationexperiments
AT downardaj evolutionofparticlecompositionincloudnucleationexperiments
AT ehrharts evolutionofparticlecompositionincloudnucleationexperiments
AT franchina evolutionofparticlecompositionincloudnucleationexperiments
AT kajosmk evolutionofparticlecompositionincloudnucleationexperiments
AT kirkbyj evolutionofparticlecompositionincloudnucleationexperiments
AT kurtena evolutionofparticlecompositionincloudnucleationexperiments
AT nieminent evolutionofparticlecompositionincloudnucleationexperiments
AT makhmutovv evolutionofparticlecompositionincloudnucleationexperiments
AT mathots evolutionofparticlecompositionincloudnucleationexperiments
AT miettinenp evolutionofparticlecompositionincloudnucleationexperiments
AT onnelaa evolutionofparticlecompositionincloudnucleationexperiments
AT petajat evolutionofparticlecompositionincloudnucleationexperiments
AT praplana evolutionofparticlecompositionincloudnucleationexperiments
AT santosfd evolutionofparticlecompositionincloudnucleationexperiments
AT schallharts evolutionofparticlecompositionincloudnucleationexperiments
AT sipilam evolutionofparticlecompositionincloudnucleationexperiments
AT stozhkovy evolutionofparticlecompositionincloudnucleationexperiments
AT tomea evolutionofparticlecompositionincloudnucleationexperiments
AT vaattovaarap evolutionofparticlecompositionincloudnucleationexperiments
AT wimmerd evolutionofparticlecompositionincloudnucleationexperiments
AT prevota evolutionofparticlecompositionincloudnucleationexperiments
AT dommenj evolutionofparticlecompositionincloudnucleationexperiments
AT donahuenm evolutionofparticlecompositionincloudnucleationexperiments
AT flaganrc evolutionofparticlecompositionincloudnucleationexperiments
AT weingartnere evolutionofparticlecompositionincloudnucleationexperiments
AT viisaneny evolutionofparticlecompositionincloudnucleationexperiments
AT riipineni evolutionofparticlecompositionincloudnucleationexperiments
AT hansela evolutionofparticlecompositionincloudnucleationexperiments
AT curtiusj evolutionofparticlecompositionincloudnucleationexperiments
AT kulmalam evolutionofparticlecompositionincloudnucleationexperiments
AT worsnopdr evolutionofparticlecompositionincloudnucleationexperiments
AT baltenspergeru evolutionofparticlecompositionincloudnucleationexperiments
AT wexh evolutionofparticlecompositionincloudnucleationexperiments
AT stratmannf evolutionofparticlecompositionincloudnucleationexperiments
AT laaksonena evolutionofparticlecompositionincloudnucleationexperiments
AT slowikjg evolutionofparticlecompositionincloudnucleationexperiments