Cargando…
Evolution of particle composition in CLOUD nucleation experiments
Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Ce...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5194/acp-13-5587-2013 http://cds.cern.ch/record/1972004 |
_version_ | 1780944862394187776 |
---|---|
author | Keskinen, H Virtanen, A Joutsensaari, J Tsagkogeorgas, G Duplissy, J Schobesberger, S Gysel, M Riccobono, F Bianchi, F Yli-Juuti, T Lehtipalo, K Rondo, L Breitenlechner, M Kupc, A Almeida, J Amorim, A Dunne, E M Downard, A J Ehrhart, S Franchin, A Kajos, M K Kirkby, J Kurten, A Nieminen, T Makhmutov, V Mathot, S Miettinen, P Onnela, A Petaja, T Praplan, A Santos, F D Schallhart, S Sipila, M Stozhkov, Y Tome, A Vaattovaara, P Wimmer, D Prevot, A Dommen, J Donahue, N M Flagan, R C Weingartner, E Viisanen, Y Riipinen, I Hansel, A Curtius, J Kulmala, M Worsnop, D R Baltensperger, U Wex, H Stratmann, F Laaksonen, A Slowik, J G |
author_facet | Keskinen, H Virtanen, A Joutsensaari, J Tsagkogeorgas, G Duplissy, J Schobesberger, S Gysel, M Riccobono, F Bianchi, F Yli-Juuti, T Lehtipalo, K Rondo, L Breitenlechner, M Kupc, A Almeida, J Amorim, A Dunne, E M Downard, A J Ehrhart, S Franchin, A Kajos, M K Kirkby, J Kurten, A Nieminen, T Makhmutov, V Mathot, S Miettinen, P Onnela, A Petaja, T Praplan, A Santos, F D Schallhart, S Sipila, M Stozhkov, Y Tome, A Vaattovaara, P Wimmer, D Prevot, A Dommen, J Donahue, N M Flagan, R C Weingartner, E Viisanen, Y Riipinen, I Hansel, A Curtius, J Kulmala, M Worsnop, D R Baltensperger, U Wex, H Stratmann, F Laaksonen, A Slowik, J G |
author_sort | Keskinen, H |
collection | CERN |
description | Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ∼ 0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products. |
id | cern-1972004 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2013 |
record_format | invenio |
spelling | cern-19720042019-09-30T06:29:59Zdoi:10.5194/acp-13-5587-2013http://cds.cern.ch/record/1972004engKeskinen, HVirtanen, AJoutsensaari, JTsagkogeorgas, GDuplissy, JSchobesberger, SGysel, MRiccobono, FBianchi, FYli-Juuti, TLehtipalo, KRondo, LBreitenlechner, MKupc, AAlmeida, JAmorim, ADunne, E MDownard, A JEhrhart, SFranchin, AKajos, M KKirkby, JKurten, ANieminen, TMakhmutov, VMathot, SMiettinen, POnnela, APetaja, TPraplan, ASantos, F DSchallhart, SSipila, MStozhkov, YTome, AVaattovaara, PWimmer, DPrevot, ADommen, JDonahue, N MFlagan, R CWeingartner, EViisanen, YRiipinen, IHansel, ACurtius, JKulmala, MWorsnop, D RBaltensperger, UWex, HStratmann, FLaaksonen, ASlowik, J GEvolution of particle composition in CLOUD nucleation experimentsChemical Physics and ChemistrySulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ∼ 0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products.oai:cds.cern.ch:19720042013 |
spellingShingle | Chemical Physics and Chemistry Keskinen, H Virtanen, A Joutsensaari, J Tsagkogeorgas, G Duplissy, J Schobesberger, S Gysel, M Riccobono, F Bianchi, F Yli-Juuti, T Lehtipalo, K Rondo, L Breitenlechner, M Kupc, A Almeida, J Amorim, A Dunne, E M Downard, A J Ehrhart, S Franchin, A Kajos, M K Kirkby, J Kurten, A Nieminen, T Makhmutov, V Mathot, S Miettinen, P Onnela, A Petaja, T Praplan, A Santos, F D Schallhart, S Sipila, M Stozhkov, Y Tome, A Vaattovaara, P Wimmer, D Prevot, A Dommen, J Donahue, N M Flagan, R C Weingartner, E Viisanen, Y Riipinen, I Hansel, A Curtius, J Kulmala, M Worsnop, D R Baltensperger, U Wex, H Stratmann, F Laaksonen, A Slowik, J G Evolution of particle composition in CLOUD nucleation experiments |
title | Evolution of particle composition in CLOUD nucleation experiments |
title_full | Evolution of particle composition in CLOUD nucleation experiments |
title_fullStr | Evolution of particle composition in CLOUD nucleation experiments |
title_full_unstemmed | Evolution of particle composition in CLOUD nucleation experiments |
title_short | Evolution of particle composition in CLOUD nucleation experiments |
title_sort | evolution of particle composition in cloud nucleation experiments |
topic | Chemical Physics and Chemistry |
url | https://dx.doi.org/10.5194/acp-13-5587-2013 http://cds.cern.ch/record/1972004 |
work_keys_str_mv | AT keskinenh evolutionofparticlecompositionincloudnucleationexperiments AT virtanena evolutionofparticlecompositionincloudnucleationexperiments AT joutsensaarij evolutionofparticlecompositionincloudnucleationexperiments AT tsagkogeorgasg evolutionofparticlecompositionincloudnucleationexperiments AT duplissyj evolutionofparticlecompositionincloudnucleationexperiments AT schobesbergers evolutionofparticlecompositionincloudnucleationexperiments AT gyselm evolutionofparticlecompositionincloudnucleationexperiments AT riccobonof evolutionofparticlecompositionincloudnucleationexperiments AT bianchif evolutionofparticlecompositionincloudnucleationexperiments AT ylijuutit evolutionofparticlecompositionincloudnucleationexperiments AT lehtipalok evolutionofparticlecompositionincloudnucleationexperiments AT rondol evolutionofparticlecompositionincloudnucleationexperiments AT breitenlechnerm evolutionofparticlecompositionincloudnucleationexperiments AT kupca evolutionofparticlecompositionincloudnucleationexperiments AT almeidaj evolutionofparticlecompositionincloudnucleationexperiments AT amorima evolutionofparticlecompositionincloudnucleationexperiments AT dunneem evolutionofparticlecompositionincloudnucleationexperiments AT downardaj evolutionofparticlecompositionincloudnucleationexperiments AT ehrharts evolutionofparticlecompositionincloudnucleationexperiments AT franchina evolutionofparticlecompositionincloudnucleationexperiments AT kajosmk evolutionofparticlecompositionincloudnucleationexperiments AT kirkbyj evolutionofparticlecompositionincloudnucleationexperiments AT kurtena evolutionofparticlecompositionincloudnucleationexperiments AT nieminent evolutionofparticlecompositionincloudnucleationexperiments AT makhmutovv evolutionofparticlecompositionincloudnucleationexperiments AT mathots evolutionofparticlecompositionincloudnucleationexperiments AT miettinenp evolutionofparticlecompositionincloudnucleationexperiments AT onnelaa evolutionofparticlecompositionincloudnucleationexperiments AT petajat evolutionofparticlecompositionincloudnucleationexperiments AT praplana evolutionofparticlecompositionincloudnucleationexperiments AT santosfd evolutionofparticlecompositionincloudnucleationexperiments AT schallharts evolutionofparticlecompositionincloudnucleationexperiments AT sipilam evolutionofparticlecompositionincloudnucleationexperiments AT stozhkovy evolutionofparticlecompositionincloudnucleationexperiments AT tomea evolutionofparticlecompositionincloudnucleationexperiments AT vaattovaarap evolutionofparticlecompositionincloudnucleationexperiments AT wimmerd evolutionofparticlecompositionincloudnucleationexperiments AT prevota evolutionofparticlecompositionincloudnucleationexperiments AT dommenj evolutionofparticlecompositionincloudnucleationexperiments AT donahuenm evolutionofparticlecompositionincloudnucleationexperiments AT flaganrc evolutionofparticlecompositionincloudnucleationexperiments AT weingartnere evolutionofparticlecompositionincloudnucleationexperiments AT viisaneny evolutionofparticlecompositionincloudnucleationexperiments AT riipineni evolutionofparticlecompositionincloudnucleationexperiments AT hansela evolutionofparticlecompositionincloudnucleationexperiments AT curtiusj evolutionofparticlecompositionincloudnucleationexperiments AT kulmalam evolutionofparticlecompositionincloudnucleationexperiments AT worsnopdr evolutionofparticlecompositionincloudnucleationexperiments AT baltenspergeru evolutionofparticlecompositionincloudnucleationexperiments AT wexh evolutionofparticlecompositionincloudnucleationexperiments AT stratmannf evolutionofparticlecompositionincloudnucleationexperiments AT laaksonena evolutionofparticlecompositionincloudnucleationexperiments AT slowikjg evolutionofparticlecompositionincloudnucleationexperiments |