Cargando…

Hadron Physics at the COMPASS Experiment

Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this c...

Descripción completa

Detalles Bibliográficos
Autor principal: Krinner, Fabian
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1051/epjconf/20159504033
http://cds.cern.ch/record/1975703
_version_ 1780945093736267776
author Krinner, Fabian
author_facet Krinner, Fabian
author_sort Krinner, Fabian
collection CERN
description Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new $J^{PC} = 1^{++}$ state, the $a_1(1420)$, is observed with a mass and width in the ranges $m = 1412-1422\,\mathrm{MeV}/c^2$ and $\Gamma = 130-150\,\mathrm{MeV}/c^2$.
id cern-1975703
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
record_format invenio
spelling cern-19757032023-03-14T17:48:03Zdoi:10.1051/epjconf/20159504033http://cds.cern.ch/record/1975703engKrinner, FabianHadron Physics at the COMPASS ExperimentParticle Physics - ExperimentQuantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new $J^{PC} = 1^{++}$ state, the $a_1(1420)$, is observed with a mass and width in the ranges $m = 1412-1422\,\mathrm{MeV}/c^2$ and $\Gamma = 130-150\,\mathrm{MeV}/c^2$.Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology.Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new $J^{PC} = 1^{++}$ state, the $a_1(1420)$, is observed with a mass and width in the ranges $m = 1412-1422\,\mathrm{MeV}/c^2$ and $\Gamma = 130-150\,\mathrm{MeV}/c^2$.arXiv:1412.2594oai:cds.cern.ch:19757032014-12-08
spellingShingle Particle Physics - Experiment
Krinner, Fabian
Hadron Physics at the COMPASS Experiment
title Hadron Physics at the COMPASS Experiment
title_full Hadron Physics at the COMPASS Experiment
title_fullStr Hadron Physics at the COMPASS Experiment
title_full_unstemmed Hadron Physics at the COMPASS Experiment
title_short Hadron Physics at the COMPASS Experiment
title_sort hadron physics at the compass experiment
topic Particle Physics - Experiment
url https://dx.doi.org/10.1051/epjconf/20159504033
http://cds.cern.ch/record/1975703
work_keys_str_mv AT krinnerfabian hadronphysicsatthecompassexperiment