Cargando…
Charm studies in emulsion
Neutrino-nucleon scattering is an effective way to investigate the inner structure of the nucleon, to extract the Standard Model parameters and to explore heavy quarks production dynamics. In the last decades, several experiments have been constructed to study weak interactions of neutrinos with nuc...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1975955 |
Sumario: | Neutrino-nucleon scattering is an effective way to investigate the inner structure of the nucleon, to extract the Standard Model parameters and to explore heavy quarks production dynamics. In the last decades, several experiments have been constructed to study weak interactions of neutrinos with nucleons. One of them was CERN-WA95 experiment operated by the CHORUS collaboration. It is based on a hybrid detector with nuclear emulsion as a target followed by electronic devices. Nuclear emulsion provides three dimensional spatial information with an outstanding resolution of the order of one micron. Therefore, it is ideal to detect short-lived particles. A special technique has been developed to reconstruct events in the emulsion which allows to perform a detailed investigation of events such as charmed hadrons production by neutrinos. As a result, the backround in the selected charm sample is up to six times lower compared to similar experiments. Such a method also permits to make direct measurements of some quantities instead of model fittings. This thesis is devoted to the study of the muonic decays of charmed hadrons and their production in emulsion. Manual inspection of charm events gives a complete reconstruction of charm decay topology. The extraction of the inclusive muonic branching ratio is based on the ratios per number of charged daughters in charm decay. Such an approach allows to separetely measure the muonic branching ratios for neutral and charged charm particles. Finally, normalization of the events with a muon in the final state to the charged current events gives dimuon production rate which is found compatible with the previous experiments. On top of that, preliminary results are shown for Bjorken x distribution and for a direct measurement of the Vcd Cabbibo-Kabayashi-Maskawa matrix element. |
---|