Cargando…
A Novel Active Bouncer System for Klystron Modulators with Constant AC Power Consumption
This paper presents the principles and design methodologies of a novel active bouncer system, to be implemented in a transformer-based klystron modulator, which is able to meet two different objectives: 1. Regulate the output pulse voltage flattop, and 2. Attenuate the power fluctuation withdrawn fr...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1977402 |
Sumario: | This paper presents the principles and design methodologies of a novel active bouncer system, to be implemented in a transformer-based klystron modulator, which is able to meet two different objectives: 1. Regulate the output pulse voltage flattop, and 2. Attenuate the power fluctuation withdrawn from the AC network. This solution allows the utilization of a standard constant voltage / constant current power supply as a capacitor charger. The solution consists of a 4-quadrant switching converter placed in series with the main capacitor bank (forming a unique element in parallel with the capacitor charger), controlled with specific feed-back loops to achieve the two objectives. The complete design method, including a numerical optimization, of the whole system, is presented in the paper. Analyses of the compromises between the active bouncer specifications and the other modulator sub-components design is presented as well. |
---|