Cargando…

Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM

We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve o...

Descripción completa

Detalles Bibliográficos
Autores principales: Chicherin, Dmitry, Doobary, Reza, Eden, Burkhard, Heslop, Paul, Korchemsky, Gregory P., Mason, Lionel, Sokatchev, Emery
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP06(2015)198
http://cds.cern.ch/record/1979332
_version_ 1780945199581626368
author Chicherin, Dmitry
Doobary, Reza
Eden, Burkhard
Heslop, Paul
Korchemsky, Gregory P.
Mason, Lionel
Sokatchev, Emery
author_facet Chicherin, Dmitry
Doobary, Reza
Eden, Burkhard
Heslop, Paul
Korchemsky, Gregory P.
Mason, Lionel
Sokatchev, Emery
author_sort Chicherin, Dmitry
collection CERN
description We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.
id cern-1979332
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
record_format invenio
spelling cern-19793322023-10-04T07:44:57Zdoi:10.1007/JHEP06(2015)198http://cds.cern.ch/record/1979332engChicherin, DmitryDoobary, RezaEden, BurkhardHeslop, PaulKorchemsky, Gregory P.Mason, LionelSokatchev, EmeryCorrelation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYMParticle Physics - TheoryWe give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of $ \mathcal{N}=4 $ SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of $ \mathcal{N}=4 $ off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in $ \mathcal{N}=4 $ SYM.We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.arXiv:1412.8718CERN-PH-TH-2014-270DCPT-14-79HU-EP-14-66IPHT-T14-242LAPTH-239-14CERN-PH-TH-2014-270DCPT-14-79HU-EP-14-66IPHT-T14-242LAPTH-239-14oai:cds.cern.ch:19793322014-12-30
spellingShingle Particle Physics - Theory
Chicherin, Dmitry
Doobary, Reza
Eden, Burkhard
Heslop, Paul
Korchemsky, Gregory P.
Mason, Lionel
Sokatchev, Emery
Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
title Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
title_full Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
title_fullStr Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
title_full_unstemmed Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
title_short Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
title_sort correlation functions of the chiral stress-tensor multiplet in $ \mathcal{n}=4 $ sym
topic Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP06(2015)198
http://cds.cern.ch/record/1979332
work_keys_str_mv AT chicherindmitry correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym
AT doobaryreza correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym
AT edenburkhard correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym
AT hesloppaul correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym
AT korchemskygregoryp correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym
AT masonlionel correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym
AT sokatchevemery correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym