Cargando…
Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve o...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP06(2015)198 http://cds.cern.ch/record/1979332 |
_version_ | 1780945199581626368 |
---|---|
author | Chicherin, Dmitry Doobary, Reza Eden, Burkhard Heslop, Paul Korchemsky, Gregory P. Mason, Lionel Sokatchev, Emery |
author_facet | Chicherin, Dmitry Doobary, Reza Eden, Burkhard Heslop, Paul Korchemsky, Gregory P. Mason, Lionel Sokatchev, Emery |
author_sort | Chicherin, Dmitry |
collection | CERN |
description | We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM. |
id | cern-1979332 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
record_format | invenio |
spelling | cern-19793322023-10-04T07:44:57Zdoi:10.1007/JHEP06(2015)198http://cds.cern.ch/record/1979332engChicherin, DmitryDoobary, RezaEden, BurkhardHeslop, PaulKorchemsky, Gregory P.Mason, LionelSokatchev, EmeryCorrelation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYMParticle Physics - TheoryWe give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of $ \mathcal{N}=4 $ SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of $ \mathcal{N}=4 $ off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in $ \mathcal{N}=4 $ SYM.We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.arXiv:1412.8718CERN-PH-TH-2014-270DCPT-14-79HU-EP-14-66IPHT-T14-242LAPTH-239-14CERN-PH-TH-2014-270DCPT-14-79HU-EP-14-66IPHT-T14-242LAPTH-239-14oai:cds.cern.ch:19793322014-12-30 |
spellingShingle | Particle Physics - Theory Chicherin, Dmitry Doobary, Reza Eden, Burkhard Heslop, Paul Korchemsky, Gregory P. Mason, Lionel Sokatchev, Emery Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM |
title | Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM |
title_full | Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM |
title_fullStr | Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM |
title_full_unstemmed | Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM |
title_short | Correlation functions of the chiral stress-tensor multiplet in $ \mathcal{N}=4 $ SYM |
title_sort | correlation functions of the chiral stress-tensor multiplet in $ \mathcal{n}=4 $ sym |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1007/JHEP06(2015)198 http://cds.cern.ch/record/1979332 |
work_keys_str_mv | AT chicherindmitry correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym AT doobaryreza correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym AT edenburkhard correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym AT hesloppaul correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym AT korchemskygregoryp correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym AT masonlionel correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym AT sokatchevemery correlationfunctionsofthechiralstresstensormultipletinmathcaln4sym |