Cargando…
Approximation of stochastic invariant manifolds: stochastic manifolds for nonlinear SPDEs I
This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-12496-4 http://cds.cern.ch/record/1980577 |
Sumario: | This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems. |
---|