Cargando…
Jacobi forms, finite quadratic modules and Weil representations over number fields
The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi form...
Autor principal: | Boylan, Hatice |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-12916-7 http://cds.cern.ch/record/1980579 |
Ejemplares similares
-
Elements of the representation theory of the Jacobi group
por: Berndt, Rolf, et al.
Publicado: (1998) -
Weil’s representation and the spectrum of the metaplectic group
por: Gelbart, Stephen Samuel
Publicado: (1976) -
Quadratic forms over semilocal rings
por: Baeza, Ricardo
Publicado: (1978) -
Quadratic and Hermitian forms over rings
por: Knus, Max-Albert
Publicado: (1991) -
The Weil representation, maslov index and theta series
por: Lion, Gérard, et al.
Publicado: (1980)