Cargando…
Quasi-least squares regression
Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generaliz...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
Taylor and Francis
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1985570 |
_version_ | 1780945386607738880 |
---|---|
author | Shults, Justine Hilbe, Joseph M |
author_facet | Shults, Justine Hilbe, Joseph M |
author_sort | Shults, Justine |
collection | CERN |
description | Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitu |
id | cern-1985570 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
publisher | Taylor and Francis |
record_format | invenio |
spelling | cern-19855702021-04-21T20:37:21Zhttp://cds.cern.ch/record/1985570engShults, JustineHilbe, Joseph MQuasi-least squares regressionMathematical Physics and MathematicsDrawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longituTaylor and Francisoai:cds.cern.ch:19855702014 |
spellingShingle | Mathematical Physics and Mathematics Shults, Justine Hilbe, Joseph M Quasi-least squares regression |
title | Quasi-least squares regression |
title_full | Quasi-least squares regression |
title_fullStr | Quasi-least squares regression |
title_full_unstemmed | Quasi-least squares regression |
title_short | Quasi-least squares regression |
title_sort | quasi-least squares regression |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/1985570 |
work_keys_str_mv | AT shultsjustine quasileastsquaresregression AT hilbejosephm quasileastsquaresregression |