Cargando…

Quasi-least squares regression

Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generaliz...

Descripción completa

Detalles Bibliográficos
Autores principales: Shults, Justine, Hilbe, Joseph M
Lenguaje:eng
Publicado: Taylor and Francis 2014
Materias:
Acceso en línea:http://cds.cern.ch/record/1985570
_version_ 1780945386607738880
author Shults, Justine
Hilbe, Joseph M
author_facet Shults, Justine
Hilbe, Joseph M
author_sort Shults, Justine
collection CERN
description Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitu
id cern-1985570
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher Taylor and Francis
record_format invenio
spelling cern-19855702021-04-21T20:37:21Zhttp://cds.cern.ch/record/1985570engShults, JustineHilbe, Joseph MQuasi-least squares regressionMathematical Physics and MathematicsDrawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longituTaylor and Francisoai:cds.cern.ch:19855702014
spellingShingle Mathematical Physics and Mathematics
Shults, Justine
Hilbe, Joseph M
Quasi-least squares regression
title Quasi-least squares regression
title_full Quasi-least squares regression
title_fullStr Quasi-least squares regression
title_full_unstemmed Quasi-least squares regression
title_short Quasi-least squares regression
title_sort quasi-least squares regression
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/1985570
work_keys_str_mv AT shultsjustine quasileastsquaresregression
AT hilbejosephm quasileastsquaresregression