Cargando…

Index analysis: approach theory at work

A featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.   The number of conceptually and technically di...

Descripción completa

Detalles Bibliográficos
Autor principal: Lowen, R
Lenguaje:eng
Publicado: Springer 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-1-4471-6485-2
http://cds.cern.ch/record/1987466
_version_ 1780945507723509760
author Lowen, R
author_facet Lowen, R
author_sort Lowen, R
collection CERN
description A featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.   The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.   Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories. Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.
id cern-1987466
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher Springer
record_format invenio
spelling cern-19874662021-04-21T20:34:29Zdoi:10.1007/978-1-4471-6485-2http://cds.cern.ch/record/1987466engLowen, RIndex analysis: approach theory at workMathematical Physics and MathematicsA featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.   The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.   Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories. Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.Springeroai:cds.cern.ch:19874662015
spellingShingle Mathematical Physics and Mathematics
Lowen, R
Index analysis: approach theory at work
title Index analysis: approach theory at work
title_full Index analysis: approach theory at work
title_fullStr Index analysis: approach theory at work
title_full_unstemmed Index analysis: approach theory at work
title_short Index analysis: approach theory at work
title_sort index analysis: approach theory at work
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-1-4471-6485-2
http://cds.cern.ch/record/1987466
work_keys_str_mv AT lowenr indexanalysisapproachtheoryatwork