Cargando…
Symmetry representation theory and its applications: in honor of Nolan R. Wallach
Symmetry has served as an organizing principle in Nolan R. Wallach's fundamental contributions to representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. This volume is...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-1-4939-1590-3 http://cds.cern.ch/record/1987472 |
Sumario: | Symmetry has served as an organizing principle in Nolan R. Wallach's fundamental contributions to representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. This volume is a collection of 19 invited articles that pay tribute to the breadth and depth of Wallach's work. The mostly expository articles are written by distinguished mathematicians and contain sufficient preliminary material so as to reach the widest possible audience. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch K. Baur M. Bhargava B. Casselman D. Ciubotaru M. Colarusso T. J. Enright S. Evens W. T. Gan A. M. Garsia R. Gomez G. Gour B. H. Gross G. Han P. E. Harris J. Hong R. E. Howe M. Hunziker B. Kostant H. Kraft R. J. Miatello L. Ni W. A. Pruett G. W. Schwarz A. Touzé D. A. Vogan N. R. Wallach J. F. Willenbring F. L. Williams J. A. Wolf G. Xin O. Yacobi M. Zabrocki |
---|