Cargando…
Generalized Metric Formulation of Double Field Theory on Group Manifolds
We rewrite the recently derived cubic action of Double Field Theory on group manifolds [arXiv:1410.6374] in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2015)056 http://cds.cern.ch/record/1987944 |
Sumario: | We rewrite the recently derived cubic action of Double Field Theory on group manifolds [arXiv:1410.6374] in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT${}_\mathrm{WZW}$ and of original DFT from tori is clarified. Furthermore we show how to relate DFT${}_\mathrm{WZW}$ of the WZW background with the flux formulation of original DFT. |
---|