Cargando…

Embedding problems in symplectic geometry

Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For i...

Descripción completa

Detalles Bibliográficos
Autor principal: Schlenk, Felix
Lenguaje:eng
Publicado: De Gruyter 2005
Materias:
Acceso en línea:http://cds.cern.ch/record/1991551
Descripción
Sumario:Symplectic geometry is the geometry underlying Hamiltonian dynamics, and symplectic mappings arise as time-1-maps of Hamiltonian flows. The spectacular rigidity phenomena for symplectic mappings discovered in the last two decades show that certain things cannot be done by a symplectic mapping. For instance, Gromov''s famous "non-squeezing'''' theorem states that one cannot map a ball into a thinner cylinder by a symplectic embedding. The aim of this book is to show that certain other things can be done by symplectic mappings. This is achieved by various elementary and explicit symplectic embedding constructions, such as "folding", "wrapping'''', and "lifting''''. These constructions are carried out in detail and are used to solve some specific symplectic embedding problems. The exposition is self-contained and addressed to students and researchers interested in geometry or dynamics.