Cargando…
Approximation methods for efficient learning of Bayesian networks
This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations...
Autor principal: | Riggelsen, C |
---|---|
Lenguaje: | eng |
Publicado: |
IOS
2008
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1991958 |
Ejemplares similares
-
Handbook of approximate Bayesian computation
por: Sisson, Scott A, et al.
Publicado: (2018) -
Introduction to the network approximation method for materials modeling
por: Berlyand, Leonid, et al.
Publicado: (2012) -
Bayesian learning for neural networks
por: Neal, Radford M
Publicado: (1996) -
Methods of numerical approximation
por: Handscomb, David Christopher
Publicado: (1966) -
Numerical methods in approximation theory
por: Braess, Dietrich, et al.
Publicado: (1992)