Cargando…
Problems and proofs in numbers and algebra
Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove th...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-14427-6 http://cds.cern.ch/record/1996708 |
_version_ | 1780945888089210880 |
---|---|
author | Millman, Richard S Shiue, Peter J Kahn, Eric Brendan |
author_facet | Millman, Richard S Shiue, Peter J Kahn, Eric Brendan |
author_sort | Millman, Richard S |
collection | CERN |
description | Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to “prove” or “solve” complex problems. This method of instruction is augmented by examining applications of number theory in systems such as RSA cryptography, Universal Product Code (UPC), and International Standard Book Number (ISBN). The numerous problems and examples included in each section reward curiosity and insightfulness over more simplistic approaches. Each problem set begins with a few easy problems, progressing to problems or proofs with multi-step solutions. Exercises in the text stay close to the examples of the section, allowing students the immediate opportunity to practice developing techniques. Beyond the undergraduate mathematics student audience, the text can also offer a rigorous treatment of mathematics content (numbers and algebra) for high achieving high school students. Furthermore, prospective teachers will add to the breadth of the audience as math education majors, will understand more thoroughly methods of proof, and will add to the depth of their mathematical knowledge. |
id | cern-1996708 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2015 |
publisher | Springer |
record_format | invenio |
spelling | cern-19967082021-04-21T20:26:47Zdoi:10.1007/978-3-319-14427-6http://cds.cern.ch/record/1996708engMillman, Richard SShiue, Peter JKahn, Eric BrendanProblems and proofs in numbers and algebraMathematical Physics and MathematicsDesigned to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to “prove” or “solve” complex problems. This method of instruction is augmented by examining applications of number theory in systems such as RSA cryptography, Universal Product Code (UPC), and International Standard Book Number (ISBN). The numerous problems and examples included in each section reward curiosity and insightfulness over more simplistic approaches. Each problem set begins with a few easy problems, progressing to problems or proofs with multi-step solutions. Exercises in the text stay close to the examples of the section, allowing students the immediate opportunity to practice developing techniques. Beyond the undergraduate mathematics student audience, the text can also offer a rigorous treatment of mathematics content (numbers and algebra) for high achieving high school students. Furthermore, prospective teachers will add to the breadth of the audience as math education majors, will understand more thoroughly methods of proof, and will add to the depth of their mathematical knowledge.Springeroai:cds.cern.ch:19967082015 |
spellingShingle | Mathematical Physics and Mathematics Millman, Richard S Shiue, Peter J Kahn, Eric Brendan Problems and proofs in numbers and algebra |
title | Problems and proofs in numbers and algebra |
title_full | Problems and proofs in numbers and algebra |
title_fullStr | Problems and proofs in numbers and algebra |
title_full_unstemmed | Problems and proofs in numbers and algebra |
title_short | Problems and proofs in numbers and algebra |
title_sort | problems and proofs in numbers and algebra |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-14427-6 http://cds.cern.ch/record/1996708 |
work_keys_str_mv | AT millmanrichards problemsandproofsinnumbersandalgebra AT shiuepeterj problemsandproofsinnumbersandalgebra AT kahnericbrendan problemsandproofsinnumbersandalgebra |