Cargando…
R&D for a highly granular silicon tungsten electromagnetic calorimeter
This article reports on first experience with the technological prototype of a highly- granular silicon-tungsten electromagnetic calorimeter as envisaged for the detectors at a future lepton collider. In the focus of the analysis is the performance of a highly integrated Application Specific Integra...
Autor principal: | |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | eng |
Publicado: |
J. Phys.: Conf. Ser.
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/587/1/012032 http://cds.cern.ch/record/1999211 |
Sumario: | This article reports on first experience with the technological prototype of a highly- granular silicon-tungsten electromagnetic calorimeter as envisaged for the detectors at a future lepton collider. In the focus of the analysis is the performance of a highly integrated Application Specific Integrated Circuit designed to meet the requirements in terms of dynamic range, compactness and power consumption. The beam test results show that the circuit will allow a future detector with a signal over noise ratio of at least 10:1. To minimise the power dissipation the ASIC will be operated in a power pulsed mode. So far no conceptual problem was revealed but the studies show the way for further work. The prototype is read out by a DAQ system conceived to meet the needs of a trigger less system with a huge number of readout cells. |
---|