Cargando…
Three-Family Particle Physics Models from Global F-theory Compactifications
We construct four-dimensional, globally consistent F-theory models with three chiral generations, whose gauge group and matter representations coincide with those of the Minimal Supersymmetric Standard Model, the Pati-Salam Model and the Trinification Model. These models result from compactification...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2015)087 http://cds.cern.ch/record/1999629 |
Sumario: | We construct four-dimensional, globally consistent F-theory models with three chiral generations, whose gauge group and matter representations coincide with those of the Minimal Supersymmetric Standard Model, the Pati-Salam Model and the Trinification Model. These models result from compactification on toric hypersurface fibrations $X$ with the choice of base $\mathbb{P}^3$. We observe that the F-theory conditions on the $G_4$-flux restrict the number of families to be at least three. We comment on the phenomenology of the models, and for Pati-Salam and Trinification models discuss the Higgsing to the Standard Model. A central point of this work is the construction of globally consistent $G_4$-flux. For this purpose we compute the vertical cohomology $H_V^{(2,2)}(X)$ in each case and solve the conditions imposed by matching the M- and F-theoretical 3D Chern-Simons terms. We explicitly check that the expressions found for the $G_4$-flux allow for a cancelation of D3-brane tadpoles. We also use the integrality of 3D Chern-Simons terms to ensure that our $G_4$-flux solutions are adequately quantized. |
---|