Cargando…

Exploratory multivariate analysis by example using R

Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitati...

Descripción completa

Detalles Bibliográficos
Autores principales: Husson, Francois, Le, Sebastien, Pages, Jerome
Lenguaje:eng
Publicado: CRC Press 2010
Materias:
Acceso en línea:http://cds.cern.ch/record/1999786
_version_ 1780945933140230144
author Husson, Francois
Le, Sebastien
Pages, Jerome
author_facet Husson, Francois
Le, Sebastien
Pages, Jerome
author_sort Husson, Francois
collection CERN
description Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the prin
id cern-1999786
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2010
publisher CRC Press
record_format invenio
spelling cern-19997862021-04-21T20:26:28Zhttp://cds.cern.ch/record/1999786engHusson, FrancoisLe, SebastienPages, JeromeExploratory multivariate analysis by example using RMathematical Physics and MathematicsFull of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the prinCRC Pressoai:cds.cern.ch:19997862010
spellingShingle Mathematical Physics and Mathematics
Husson, Francois
Le, Sebastien
Pages, Jerome
Exploratory multivariate analysis by example using R
title Exploratory multivariate analysis by example using R
title_full Exploratory multivariate analysis by example using R
title_fullStr Exploratory multivariate analysis by example using R
title_full_unstemmed Exploratory multivariate analysis by example using R
title_short Exploratory multivariate analysis by example using R
title_sort exploratory multivariate analysis by example using r
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/1999786
work_keys_str_mv AT hussonfrancois exploratorymultivariateanalysisbyexampleusingr
AT lesebastien exploratorymultivariateanalysisbyexampleusingr
AT pagesjerome exploratorymultivariateanalysisbyexampleusingr